
P O R T F O L I O T R A D E R

S T R A T E G Y E X A M P L E S

CONTENTS

ROTATION STRATEGY

 Strategy Description

 Strategy Development

 Appendix

SPREAD TRADING STRATEGY

 Strategy Description

 Strategy Development

Appendix

RANK STRATEGY

 Strategy Description

 Strategy Development

 Appendix

ROTATION STRATEGY

This strategy was suggested by kbeary33 on MultiCharts Forum (Link).

STRATEGY DESCRIPTION

‘Rotation Strategy’ is a simple strategy that calculates a specific indicator by using every
instrument in the portfolio. Positions are opened for those instruments which have the best
indicator value(s).

file://server1/helpdesk/ABondar/Portfolio%20Help/New/Index%23_Пример_стратегии_
file://server1/helpdesk/ABondar/Portfolio%20Help/New/Pair%23_Пример_стратегии_
file://server1/helpdesk/ABondar/Portfolio%20Help/New/Rank%23_Пример_стратегии_
http://www.multicharts.com/discussion/viewtopic.php?f=19&t=45413

Take for example the “% Change” indicator. This set of instruments is determined by the
user in the Portfolio Trading application. The number of instruments to enter a Long
position is configured by the “BuyBestX” input. Standard stop loss +profit target strategy is
used to exit positions.

STRATEGY DEVELOPMENT

a) Portfolio_Rotation signal
This signal generates entry orders and calculates indicator values for all
instruments in the portfolio.

Indicator formula is entered into the input field and it is calculated on every bar.

inputs:

 Formula(PercentChange(close, 14));

variables: formulaValue(0);

formulaValue = Formula;

To further compare and decide to enter the position, the formula is then entered
into global variables:

pmm_set_my_named_num("RotationalValue", formulaValue);

Entries for all instruments are generated:

buy("LE") next bar market;

b) Portfolio_Rotation

This strategy checks the indicator values for all instruments and manages opening
positions.

The user sets the number of portfolio instruments for which positions are opened:

inputs: BuyBestX(10);

Rotation Strategy extracts the Indicator values of all instruments, then creates a
sorted list of values at every calculation. To do this, we need 2 arrays: one for the
indicator values and another for strategy indices.

variables: idx(0), strategyIdx(0), strategyValue(0);

arrays: bestStrategies[](-1), bestValues[](0);

once begin

 emulate_dictionary__set_size(bestStrategies, bestValues,

BuyBestX);

 emulate_dictionary__set_size(worstStrategies, worstValues,

SellWorstY);

end;

Entry order generation is disabled before every calculation:

pmms_strategies_deny_entries_all;

Arrays are cleared and then filled with indicator values and strategy indices.

emulate_dictionary__fill_defaults(bestStrategies, bestValues, -1, 0);

emulate_dictionary__fill_defaults(worstStrategies, worstValues, -1, 0);

for strategyIdx = 0 to pmms_strategies_count - 1 begin

 strategyValue = pmms_get_strategy_named_num(strategyIdx,

"RotationalValue");

 //print(currentbar:0:0, " For " , strategyIdx:0:0, " strategy

value = ", strategyValue:0:5);

 emulate_dictionary__insert_as_best(bestStrategies, bestValues,

strategyIdx, strategyValue, -1);

end;

Finally, we calculate how many strategies have an open position. The “BuyBestX”
number of instruments should have open positions based on the indicator’s best
values:

variables: inLong(0);

arrays: strategiesLong[](-1);

inLong = pmms_strategies_in_long_count(strategiesLong);

for idx = 0 to BuyBestX - 1 begin

 if (not array_contains(strategiesLong, bestStrategies[idx]))

then begin

 pmms_strategy_allow_long_entries(bestStrategies[idx]);

 end;

end;

c) Function “emulate_dictionary__fill_defaults”:

inputs:

 KeyArray[MaxSize1](NumericArrayRef),

 ValueArray[MaxSize2](NumericArrayRef),

 defaultKey(NumericSimple),

 defaultValue(NumericSimple);

variables: idx(0);

for idx = 0 to MaxSize1 begin

 KeyArray[idx] = defaultKey;

end;

for idx = 0 to MaxSize2 begin

 ValueArray[idx] = defaultValue;

end;

d) Function “emulate_dictionary__insert_as_best”

inputs:

 KeyArray[MaxSize1](NumericArrayRef),

 ValueArray[MaxSize2](NumericArrayRef),

 Key(NumericSimple),

 Value(NumericSimple),

 defaultKey(NumericSimple);

variables: idx(0);

for idx = 0 to MaxSize1 begin

 if KeyArray[idx] = defaultKey then begin

 KeyArray[idx] = Key;

 ValueArray[idx] = Value;

 break;

 end;

 if (Value > ValueArray[idx]) then begin

 emulate_dictionary__move_right(KeyArray, ValueArray,

idx);

 KeyArray[idx] = Key;

 ValueArray[idx] = Value;

 break;

 end;

end;

e) Function “emulate_dictionary__move_right”:

inputs:

 KeyArray[MaxSize1](NumericArrayRef),

 ValueArray[MaxSize2](NumericArrayRef),

 FromIndex(NumericSimple);

variables: idx(0);

for idx = MaxSize1 downto FromIndex + 1 begin

 KeyArray[idx] = KeyArray[idx - 1];

 ValueArray[idx] = ValueArray[idx - 1];

end;

SPREAD TRADING STRATEGY

STRATEGY DESCRIPTION

Spread trading is a type of trading where instruments, divided into pairs, trade in opposite
directions. This type of trading occurs when a Long Position is opened for one instrument,
while another is opened simultaneously in the opposite direction (Short). Both of these
positions open and close synchronously.

Here is an example. A portfolio has two pairs of instruments: QQQ vs SPY and KO vs PEP.

The strategy will enter into position when the spread deviation exceeds a Standard
Deviation value for the last 20 bars. The Second Pair of Instruments enters synchronously
into a position opposite the Main Instruments (First Pair).

STRATEGY DEVELOPMENT

a) Portfolio_SpreadTradingSystem.Master Signal

This signal is calculated on based on an instrument’s data series. It contains opening
and closing logic positions:

inputs: Ratio(c / c data2), Length(10), PercentOfEquity(10);

var: AvgRatio(0), StdDevRatio(0);

var: intrabarpersist cur_pos(0);

var: Contracts_(0);

Contracts_ = Portfolio_Equity * PercentOfEquity / 100;

if 1 < currentbar then begin

 if AvgRatio + StdDevRatio < Ratio then begin// short data1, long

data2

 if -1 <> cur_pos then begin

 sellshort Contracts_ contracts this bar at c;

 cur_pos = -1;

 end;

 end else if AvgRatio - StdDevRatio > Ratio then begin// buy

data1, short data2

 if 1 <> cur_pos then begin

 buy Contracts_ contracts this bar at c;

 cur_pos = 1;

 end;

 end else begin

 cur_pos = 0;

 sell this bar c;

 buytocover this bar c;

 end;

end;

AvgRatio = XAverage(Ratio, Length);

StdDevRatio = StdDev(Ratio, Length);

Other calculations require the strategy to be applied to a portfolio of symbols, so we
need to check and see if that’s the case:

if 1 = getappinfo(aiisportfoliomode) then begin

// code

end;

For the basic strategy, we need to return the strategy index of the second
instrument and check if it has been applied:

var: slave_idx(pmms_strategies_get_by_symbol_name(symbolname data2));

once if 0 > slave_idx then

 raiseruntimeerror(text("specified slave trader on instrument ",

doublequote, symbolname data2, doublequote, " not found"));

To synchronize the capital invested into positions for both instruments, we need to
send the price of the current position of the main instrument to the pair strategy:

 value22 = absvalue(cur_pos*Contracts_) * c * bigpointvalue;

 if 0 < value22 then

 value22 = pmms_to_portfolio_currency(value22);

 pmms_set_strategy_named_num(slave_idx, "MPMoney", -cur_pos *

value22);

b) Сигнал Portfolio_SpreadTradingSystem.Slave Signal

This signal “b)” is calculated for the second instrument of the pair. It monitors all
entries and exits generated by the previous signal “a)” for the main instrument of
the pair and trades in the opposite direction. Firstly, all synchronization is done
when «MPMoney» variable returned by master strategy changes.

value1 = pmms_from_portfolio_currency(pmm_get_my_named_num("MPMoney")

);

We extract this variable and convert it from portfolio currency into instrument
currency. Then, based on its value, we calculate the number of contracts for
potential entry positions:

value33 = c;

if marketposition <> 0 then

 value33 = entryprice;

master_mp = IntPortion(value1 / (value33 * bigpointvalue));

The instrument’s current position:

my_mp = currentcontracts*marketposition;

Now we will check to see if its position is unsynchronized. If that’s the case, then we
will synchronize it with the main strategy:

if sign(my_mp) <> sign(master_mp) then begin

…

end;

We’ll check if the main instrument’s position has closed:

if 0 = value1 then begin // need close position

 if my_mp > 0 then

 sell all contracts this bar c

 else

 buytocover all contracts this bar c;

 #return;

end;

If it has closed, we’ll close the position for the second instrument as well. If the main
instrument has an open position, then we will determine the position’s direction for
the second instrument:

if 0 < value1 then begin // we must to buy

if 0 < value1 then begin // we must to buy

 Value1 > 0 means that to synchronize the positions we should buy. There can be
two cases:

1. The current flat or short position should change to long, i.e., the master strategy

has reversed its position or has entered a long position from the flat state.
2. The current position is already long which means that the first instrument

partially closed its short position, signifying that we need to partially close the
second instrument’s position.

 if Sign(master_mp) <> Sign(my_mp) then

 buy absvalue(master_mp) contracts this bar c

 else

buytocover value1 contracts this bar c;

In the opposite case:

end else begin

 if Sign(master_mp) <> Sign(my_mp) then

 sell short absvalue(master_mp) contracts this bar c

 else

 sell absvalue(value1) contracts this bar c;

end;

Value1 < 0 means that we need to sell to synchronize the positions; there also can be
two cases,

1) The current flat or long position should change to short, i.e., the master strategy has
reversed its position or has entered a short position from the flat state.

2) The current position is already short which means that the first instrument partially
closed its long position, signifying that we need to partially close the second
instrument’s position.

APPENDIX

Portfolio signals scripts are added to MultiCharts and MultiCharts64 by default.

RANK STRATEGY

This strategy can be considered a modification of the Rotation Strategy.

This strategy was suggested by Angelos Diamantis.

STRATEGY DESCRIPTION

This strategy is based on calculating that one indicator which is applied to every instrument
in the portfolio. Once all indicators’ values have been determined, they are organized based
on high to low values. Long positions are opened for instruments with best indicator values,
while short positions are opened for instruments with worst indicator values.

Let’s take an example of a portfolio consisting of 35 stocks with 5-minute resolution used
for trading. The same indicator (% Chg) with the following formula: “(close – close[1]) /
close” is calculated on a 1-day resolution for every instrument. For 5 instruments with the
highest indicator values we enter long a position. For 5 instruments with the lowest
indicator values we enter a short position.

Trade size is set as either a fixed number of contracts for all instruments or a percentage of
the total portfolio capital.

STRATEGY DEVELOPMENT

a) Portfolio Rank Signal Base
This signal calculates the value of the specified indicator for all instruments
contained in the portfolio and saves these values using the instrument strategies’
indices.

Indicator formula and data series number that will be used for its calculation are set
by the user:

inputs:

 BasedOnData(2),

 Formula((close - close[1]) / close),

 TraceOutput(false);

file:///C:/Users/dmasalov/Downloads/Index%23_Пример_стратегии_

We will need to add some restrictions to our signal so it can be used only for
portfolio trading; the data series used for its calculation should be available to start
the calculation:

// *** restrictions

once if barstatus(BasedOnData) < 0 then raiseruntimeerror("Portfolio

Rank Signal Base needs datastream " + numtostr(BasedOnData, 0));

once if 1 <> getappinfo(aiisportfoliomode) then

raiseruntimeerror("Portfolio Rank Signal Base can be applied for

MCPortfolio application only.");

// ****************

Now we will calculate our indicator using the formula and save the value for each
instrument:

BarN = BarNumber of data(BasedOnData);

if BarN > BarN[1] then begin

 R = Formula of data(BasedOnData);

 pmm_set_my_named_num("RankStrategyR", R);

end;

To trade a percentage of portfolio capital instead of fixed number of lots each
instrument should return the cost of each contract:

begin

var: MoneyCostForInvestPerCtrct(0), otential_entry_price(close);

MoneyCostForInvestPerCtrct =

pmms_calc_money_cost_for_entry_per_cntrct(potential_entry_price,

Portfolio_GetMarginPerContract)

+

pmms_calc_money_cost_for_entry_per_cntrct(potential_entry_price,

Portfolio_GetMaxPotentialLossPerContract);

 if 0 > MoneyCostForInvestPerCtrct then

raiseruntimeerror(text("Error! Price = ",

potential_entry_price:0:6, "PMargin = ",

Portfolio_GetMarginPerContract, "PMaxPLoss = ",

Portfolio_GetMarginPerContract));

 // MoneyCostForInvestPerCtrct in symbol's currency. Convert it

to portfolio currency ...

pmm_set_my_named_num("MoneyCostForInvestPerCtrct",

pmms_to_portfolio_currency(MoneyCostForInvestPerCtrct));

end;

Finally, we will generate Long and Short Entry orders. After a money management
signal calculation, only a few of them will be sent (based on the strategy’s logic):

buy next bar market;

sellshort next bar market;

b) Сигнал Portfolio Rank MM Signal

This signal is used for money management. It organizes all indicator values into a
list and manages opening positions for the instruments based on said list.
Below are user inputs which manage trade size and number of instruments for
which the position will be opened:

inputs:

 ContractsNumber(10),

 IgnoreContractsNumberUsePcnt(false),

 PortfolioBalancePercent(1),

 BuyBestN(10),

 SellWorseN(10),

 TraceOutput(false);

Let us apply some restrictions to the signal: a) it can be used only in Portfolio
Trading, b) portfolio size should not be higher than 10 000 instruments and c) the
number of instruments should correspond to user inputs that determine the
number of entries:

once if 1 <> getappinfo(aiisportfoliomode) then

raiseruntimeerror("Portfolio Rank Monem Management Signal can be

applied for MCPortfolio application only.");

once if pmms_strategies_count() > 10000 then

raiseruntimeerror("Portfolio Rank Monem Management Signal too much

intruments, max value = " + numtostr(100000, 0));

once if pmms_strategies_count() < BuyBestN + SellWorseN then

raiseruntimeerror("Portfolio Rank Monem Management Signal, please check

inputs, BuyBestN + SellWorseN should be less or equal to tradeable

Instruments number");

Save the number of traded instruments in the portfolio to a variable, and forbid
opening positions to all instruments:

once begin

 portfolioStrategies = pmms_strategies_count();

 array_setmaxindex(BaseR, portfolioStrategies);

 array_setmaxindex(ContractsForEntry, portfolioStrategies);

end;

pmms_strategies_deny_entries_all;

Extract indicators’ values for every instrument:

for idx = 0 to portfolioStrategies - 1 begin

 BaseR[idx] = pmms_get_strategy_named_num(idx, "RankStrategyR");

end;

Strategy indices and values are stored in the array so we can open positions for
those instruments with appropriate indices after all instruments have been sorted.

Then the strategy calculates the number of contracts to open a position for every
instrument. After that, the indicator values array is sorted in ascending order:

for idx = 0 to portfolioStrategies - 1 begin

 Value_Idx[1, idx + 1] = BaseR[idx];

 Value_Idx[2, idx + 1] = idx;

 if IgnoreContractsNumberUsePcnt then begin

 ContractsForEntry[idx] =

pmms_calc_contracts_for_entry(PortfolioBalancePercent, idx);

 end

 else

 ContractsForEntry[idx] = ContractsNumber;

end;

Sort2DArray(Value_Idx, 2, portfolioStrategies, 1 {from high to low});

For instruments with the highest indicator values Long Entry for the specified
number of contracts is allowed:

variables: inLong(0), inShort(0);

array: strategyIndexes[](0);

inLong = pmms_strategies_in_long_count(strategyIndexes);

for idx = 1 to BuyBestN - inLong begin

 strIdx = Value_Idx[2, idx];

pmms_strategy_set_entry_contracts(strIdx,

ContractsForEntry[strIdx]);

 pmms_strategy_allow_long_entries(strIdx);

 if TraceOutput then

 print("CurrentBar = ", currentbar:0:0, ". Allow LONG for

symbol ", pmms_strategy_symbol(strIdx), ", Contracts = ",

ContractsForEntry[strIdx]);

end;

For instruments with the lowest indicator values Short Entry for the specified
number of contracts is allowed:

inShort = pmms_strategies_in_short_count(strategyIndexes);

for idx = portfolioStrategies downto portfolioStrategies - SellWorseN +

inShort + 1 begin

 strIdx = Value_Idx[2, idx];

pmms_strategy_set_entry_contracts(strIdx,

ContractsForEntry[strIdx]);

 pmms_strategy_allow_short_entries(strIdx);

 if TraceOutput then

print("CurrentBar = ", currentbar:0:0, ". Allow SHORT for

symbol ", pmms_strategy_symbol(strIdx), ", Contracts = ",

ContractsForEntry[strIdx]);

end;

Other instruments are not traded on the current calculation.

APPENDIX

Portfolio signals scripts are added to MultiCharts and MultiCharts64 by default.

Original strategy description by Angelos Diamantis:

With regards to the rank strategy here is a short but generic description.

Assume a new class of indicators applied to the whole universe e.g. AvgReturn=

(R1+R2+R3+...+R500)/500; Sdev= Standard Deviation of AvgReturn;

where Ri = Day Return of i Stock i=1 to 500 if our universe is 500 stocks of S&P

Then based on this indicator and the data this is applied to for instance Data2= Daily,

Data1=5min Bars

Rank all Stocks from Highest to Lowest.

Vars= BarNo2(0),MyIndicator(0),R(0);

BarNo2= BarNumber of data2;

If BarNo2>BarNo2[1] then Begin

R = (C of data2 - C[1] of data2) / C[1] of data2;

MyIndicator= (R - AvgReturn) / Sdev

end;

{Retrieve MyIndicator Rank. Rank is from 1 to 500 since our universe is 500 Stocks}

If Rank<=10 then Buy 200 contracts next bar at O; {Go Long the best 10 stocks}

Else If Rank>=490 then SellShort 200 contracts next bar at O; {Go Short the Worse 10

stocks}

The above is a classic case of Stocks Relative Performance Trading

MyIndicator should be generic, meaning that the user should be able to change this

Ranking Indicator as he wishes. Another Example of Ranking Indicator might be

MyIndicator = ADX of data2; Then allow trading only in those stocks that have the

highest ADX

