
1/33

GlobalVariable.dll Version 2.2 - Documentation
Updated: 10/28/2004

Contents

 ’s New in Version 2.2?

 are Global Variables?


 Initialization
 Codes
 Memory Structure and Organization


 Wrapper Functions

 Wrapper Functions
o a Numbered Global Variable
o

 a Named Global Variable

o Named Global Variables
 Wrapper Functions

o the Value Contained in a Numbered Global Variable Location
o the Value Contained in Named Global Variable Location
o the Name of a Named Global Variable

 GVGetVersion Wrapper Function
 Calling GV Functions Without Using the EasyLanguage Wrapper Functions
 Demonstration Studies and Workspaces
 Installation
 GV 2.2 Demo Workspace 1
 GV 2.2 Demo Workspace 2

 TradeStation-compatible DLL Support Resources

2/33

What’s New in Version 2.2?
< Top > (Alt  = Back)

Below is a summary of the features that are new in GlobalVariable.dll version 2.2. See
the ReadMe.txt file included in the Global Variable download package for more
information.

Added a new type of global variables, Boolean global variables. Added functions to
demonstrate storage and retrieval of numbered and named global variables of Boolean
type.

Added functions to "reset" or "reinitialize" named global variables.
GV_ResetAllNmd<Type> functions demonstrate how all named global variables of a
given type name can have their names reset to NULL and their values reset to initial
values (0 for numeric global variables, NULL for string global variables, and FALSE for
Boolean global variables).

Added GV_Get<Type>NameByNum functions to demonstrate retrieval of the name of a
named variable based on the named variable's element location number.

Added GV_GetNamed<Type>ByNum functions to demonstrate retrieval of the value
stored in a named variable based on the named variable's element location number.

Modified return type of all functions that return strings so that they return BSTR's rather
than LPSTR's to demonstrate DLL code that can be used with applications that use
BSTR's rather than LPSTR's.

Expanded the interprocess data segment for string global variables from 3000 locations
to 10,000 locations to better demonstrate storage of numbered string global variables.

Added internal function fnGenRunTimeError to demonstrate the ability to generate a run-
time error in TradeStation under appropriate circumstances using the functionality
included in the EasyLanguage Extension SDK (tskit.dll).

Added Version.rc resource file to the DLL project to allow for easy retrieval of
GlobalVariable.dll version information (for example, using Windows Explorer).

3/33

Introduction
< Top > (Alt  = Back)

A dynamic-link library (DLL) can be used to extend EasyLanguage®. DLL’s can be
written in any of a variety of programming languages, including C/C++, Delphi, and
PowerBASIC®. User developed TradeStation(R)-compatible DLL’s, while not part of
the TradeStation platform itself, are used to provide user-developed function libraries that
may be called from EasyLanguage analysis techniques.

Functions exported from user-developed DLL’s can be called by EasyLanguage analysis
techniques and by other applications. DLL functions can perform actions that cannot be
done easily or at all in EasyLanguage. Additionally, they might be used to speed up
processing.

The purpose of the GlobalVariable.dll example is to demonstrate how code for a
TradeStation-compatible DLL can be written in C++. GlobalVariable.dll is intended to
demonstrate the use of the interface between EasyLanguage and external user DLL’s (the
ability of EasyLanguage to call external user DLL’s) and to demonstrate the run-time
error generating capability of the EasyLanguage Extension Software Development Kit
(SDK). The SDK, provided in DLL form in the file tskit.dll, allows user-developed
DLL’s to access a chart’s price and volume data, EasyLanguage analysis technique
variables, etc. The SDK is documented in the TradeStation User Guide (TradeStation
Help Menu  TradeStation User Guide  Contents Tab  EasyLanguage Reference 
Books  EasyLanguage Extension SDK). The GlobalVariable.dll example code uses the
SDK to generate run-time errors in TradeStation, when appropriate. See the
TradeStation-compatible DLL Support Resources section of this document, below, for
information on example code that makes use of other features of the EasyLanguage
Extension SDK.

What Are Global Variables?
< Top > (Alt  = Back)

This Global Variable DLL (GlobalVariable.dll) is provided as an example of a
TradeStation-compatible DLL developed in C++. The example application is the storage
of values to and retrieval of values from “global memory” (memory shared by multiple
processes). This demonstration C++ code is intended to allow EasyLanguage analysis
techniques that are applied in Charting, RadarScreen or OptionStation to pass values
between one another and to pass to, or retrieve values from, other applications (such as
Microsoft Excel®).

4/33

Values stored in global memory by EasyLanguage analysis techniques can be used in the
same analysis technique that stores them (for example, the value of a variable could be
stored on a tick-by-tick basis for retrieval by the same analysis technique on the next tick)
or can retrieved by, and used in, analysis techniques other than the analysis technique that
stores them.

Analysis techniques that use the stored values may be techniques running in applications
other than the application that places the value into global memory. For example, a study
applied to a RadarScreen might store some global variable values that could be used in
Charting or OptionStation. Another way of saying this is to say that GlobalVariable.dll
creates shared interprocess memory.

The example code for GlobalVariable.dll demonstrates how code can be written to create
two types of global variable storage locations for each of five data types. The two types
of storage locations are numbered storage locations and named storage locations. The
five data types are Boolean values, integers, single-precision floating point numbers
(called simply “floats”), double-precision floating-point numbers (called simply
“doubles”), and strings (text values).

Numbered storage locations are specified by a “location number” or “element location”.
For example, one might speak of “global integer 239” – a numbered integer storage
location of which 239 is the element location number. Or one might speak of “global
float 898” – a numbered single-precision floating point storage location of which 898 is
the element location number. In a sense, the element location number for numbered
storage locations can be thought of as a sort of “address” of that global variable. So,
extending the examples above, there could be some integer value at “address” 239 and
some float value at “address” 898 (though we haven’t yet specified what the values stored
at those “addresses” are).

Named storage locations are specified by a “global variable name” – a text string that
performs a function similar to that performed by the element location number of a
numbered storage location. So, for example, one might speak of “named global double
dStore” – a named double-precision floating-point storage location of which “dStore” is
the global variable name. Or one might speak of “global string Sym Description” – a
named string storage location of which “Sym Description” is the global variable name.

The two most basic operations that may be performed with respect to global variables
are: setting (placing a value into a global storage location) and getting (retrieving a value
from a global storage location). Demonstration C++ code is provided for setting and
getting either named or numbered variables of each different data type. For example,
code for a DLL function called GV_SetInteger() is provided to demonstrate how

5/33

C++ code could be written to set a numbered global integer location. A DLL function
called GV_SetNamedInt() is provided to demonstrate how C++ code could be
written to set a named global integer location. Code for DLL functions
GV_GetInteger() and GV_GetNamedInt() is provided to demonstrate how code
could be written for retrieval of integer values from numbered and named locations,
respectively. Similar DLL demonstration functions are provided for the other data types
– Boolean, float, double, and string.

Additionally, for named global variables, demonstration C++ code is provided to:

1.) Retrieve the value stored in a named variable based on the named variable’s
number. For example, the value stored in named float location 37 could be
retrieved without having to know the name of this named location.

2.) Retrieve the name of a named variable based on the named variable’s number.
For example, the name of named float location 37 could be retrieved.

3.) Reset all named global variables of a user-specified data type by erasing their
names and setting their values to their original (their initialization) values.

Specifications
< Top > (Alt  = Back)

General

As mentioned above, GlobalVariable.dll code provides a demonstration of storage and
retrieval of values of five data types:

1.) Boolean (true/false)
2.) Integer (whole number valued)
3.) Single-precision floating-point (also called “floats”, this type is for numbers with

a fractional portion)
4.) Double-precision floating-point (double the significant figures of floats)
5.) Strings (text strings of up to 250 characters each)

There are 10,000 numbered (as opposed to named) storage locations (numbered from 0 to
9999) for each different data type. Another way of saying this is to say that the global
memory area created by GlobalVariable.dll can simultaneously store 10,000 Boolean
values, 10,000 integers, 10,000 floats, 10,000 doubles, and 10,000 strings (of up to 250
characters each) in numbered variable locations.

6/33

There are 3000 named (as opposed to numbered) variable locations of each data type.
Names may be assigned to each location. Names may be up to 100 characters in length.
Named string global variables may contain strings of up to 250 characters. Global
variable names are case-sensitive. Global variable names may contain spaces,
punctuation marks, and other alphanumeric characters. Global variable names may be
created from any valid expression that evaluates to a string of 100 or fewer characters.

As a side note, strings longer than 79 characters may be created in EasyLanguage by
using string concatenation. Although the text between quotation marks in a string
assignment statement in EasyLanguage is limited to 79 characters per set of quotation
marks, longer strings may be created by concatenating two or more quoted strings, each
up to 79 characters in length, together, using the “+” operator. Concatenation can be
useful when it is desired to create a global variable name that is longer than 79 characters
or when it is desired to create a string for storage that is longer than 79 characters.

For example, the EasyLanguage code below creates a string longer than 79 characters:

variables:

 MyBigString("") ;

MyBigString = "Four score and seven years ago our fathers brought
forth on this " + "continent, a new nation, conceived in Liberty,
and dedicated to the " + "proposition that all men are created
equal." ;

Value1 = GVSetString(3, MyBigString) ;

Print(GVGetString(3)) ;

This code snippet demonstrates that, although the text between any pair of quotation
marks must be fewer than 79 characters in length, a string larger than 79 characters in
length can be formed by concatenation of multiple shorter strings. The string held by the
variable MyBigString, and placed into global location 3, is longer than 79 characters.

7/33

DLL Initialization
< Top > (Alt  = Back)

When GlobalVariable.dll is first loaded by a process, and when no other process has
already loaded it, all global variable values, numbered and named, are set to initial
values. Table 1, below, shows the initial values assigned to global locations of each data
type. In the table, NULL represents lack of a string value.

Table 1 – Initial Values of Global Variables and Global Variable Names

Global Variable
Type

Total Number of
Locations

Initial Name of
Each Location

Initial Value Stored
in Location

Numbered Boolean 10,000 Not Applicable FALSE
Numbered Integer 10,000 Not Applicable 0
Numbered Float 10,000 Not Applicable 0
Numbered Double 10,000 Not Applicable 0
Numbered String 10,000 Not Applicable NULL
Named Boolean 3,000 NULL FALSE
Named Integer 3,000 NULL 0
Named Float 3,000 NULL 0
Named Double 3,000 NULL 0
Named String 3,000 NULL NULL

Gobal storage locations are initialized only once by the DLL. They are initialized when
the DLL is first loaded by any process and are not re-initialized unless the DLL is
unloaded by all user processes and then reloaded.

An important point is that, although a given EasyLanguage analysis technique that uses
GlobalVariable.dll might be deleted from an application (deleted from a chart, for
example), any global memory locations that have been set by this deleted technique will
retain their values until they are changed by another technique or until all analysis
techniques using GlobalVariables.dll are deleted or changed to an “off” status in all
applications. Simply changing the status of a given technique that uses
GlobalVariable.dll from “On” to “Off” and then back to “On” will not, in and of itself,
reinitialize the global variable locations used by the technique, unless it happens to be the
only technique currently using GlobalVariable.dll. The new GV_ResetAllNmd<Type>
functions can be used to reset all named global locations of a particular type to their
initial values, however.

8/33

It should be noted that a chart reload will have the same effect as turning an analysis
technique’s status from “On” to “Off” and then back to “On”. That is, a chart reload will
cause re-initialization of all global variables unless another chart (that does not contain
the reloaded symbol) or another application is using GlobalVariable.dll.

Error Codes
< Top > (Alt  = Back)

Any of the following actions will result in an error code being returned from the
EasyLanguage wrapper functions associated with numbered global variables: an attempt
to set or get a numbered global variable using a location number that is less than 0 or
greater than 9999. In the case of Boolean global variables, a run-time error will be
generated in TradeStation.

An attempt to store a character string longer than 250 characters into a numbered string
global variable will result in storage of only the first 250 characters of the string.

Any of the following actions will result in an error code being returned from the DLL
functions associated with named global variables: an attempt to create or retrieve a
named global variable with a name shorter than 1 character in length or longer than 100
characters in length, an attempt to retrieve the value of a named global variable by name
if no variable by that name exists, an attempt to retrieve the value stored in a named
global variable using that variable’s number if no named variable with that number exists,
an attempt to set more than 3000 named locations of any data type, or an attempt to store
a string value containing more than 250 characters into a named string variable. In the
case of an error involving Boolean global variables, a run-time error may be generated in
TradeStation in cases when no definitive error value can be returned by the function.

It should be noted that the EasyLanguage user functions that set and get numbered global
variables generally contain checks to prevent global variables from being set or retrieved
until at or near the end of the loaded data stream (these EasyLanguage wrapper
functions generally contain a LastBarOnChart check). This is because global variables
have no intrinsic date or time stamp and, therefore, there is no built-in method of
synchronizing global variable values between the bars of two different charts. For this
reason, most demonstration applications that call GlobalVariable.dll make their calls to
the DLL only after LastBarOnChart becomes true, and when live market data is flowing,
rather than on historical bars.

The global variable EasyLanguage wrapper functions associated with numbered global
variables (GVSetInteger, GVGetFloat, GVGetDouble, GVSetString, etc.) will return an

9/33

error code if called on bars in a chart’s history (prior to LastBarOnChart becoming
true).

Having said this, it should also be noted that the global variable DLL functions do not
themselves contain any LastBarOnChart checks. These checks exist only in the
EasyLanguage wrapper functions for numbered global variables. (The DLL functions
can be distinguished from the EasyLanguage wrapper functions by the function name.
The DLL function names all contain an underscore character (_) whereas the
EasyLanguage wrapper function names do not. For example, the DLL function
GV_SetInteger() is wrapped (that is, it is called) by the EasyLanguage function
GVSetInteger. Similarly, the DLL function GV_GetFloat() is wrapped by the
EasyLanguage function GVGetFloat. There is no restriction with respect to the bar
number on which the DLL functions may be called directly (without using the
EasyLanguage wrapper functions). That is, the DLL functions may be directly called on
any bar in history and on the currently building bar in real-time. See the section titled
Calling GV Functions Without Using the EasyLanguage Wrapper Functions, below, for
information on how to call GlobalVariable.dll functions without using the EasyLanguage
wrapper functions (thereby avoiding the LastBarOnChart checks).

Global Memory Structure and Organization
< Top > (Alt  = Back)

Each global variable location, numbered or named, is located in an area of volatile
memory shared by all applications that use GlobalVariable.dll. Values stored in global
variables are not retained if computer power is turned off or if all applications unload
GlobalVariable.dll.

Because all applications that load GlobalVariable.dll share the GlobalVariable.dll
memory space, a given global memory location is the same location, regardless which
application refers to it. For example, global integer location 152 is the same location,
regardless of whether that location is referred to by an analysis technique in Charting, a
technique in RadarScreen, a technique in OptionStation, or referred to in another
application (such as Microsoft Excel®). If any of these applications stores a value in this
location, that value would overwrite any value previously stored there, even if the
original value was written there by another application. Similarly, all applications that
read a value from a given location at a given time will read the same value. If global
integer location 152 is read by Excel, the same value will be read as will be read by an
analysis technique running in TradeStation.

Because the global memory space is shared among applications in this manner, caution
should be exercised when selecting the number or name of a global variable to use in
each in each application. For example, if an analysis technique in Charting writes a value

10/33

to global integer location 152, it may be undesirable for a technique in RadarScreen to
write to that same storage location. Or if an analysis technique in Charting writes to a
global location named “MSFT”, it may be undesirable for a technique in OptionStation to
write to that same location name. If desired, multiple analysis techniques/applications
may write to the same named or numbered location. Caution should be exercised to
ensure that this is done only when intended.

It should be noted that global variable locations are distinct both by global variable type
(numbered or named) and by data type (Boolean, integer, float, double, or string).
Therefore, for example, global integer location 152 and global float location 152 are two
different locations. Similarly, named global float location “MyGV” and named global
double location “MyGV” are two different locations. Locations of different data types
are different locations. Each data type has its own storage space.

Similarly, global variable locations are distinct by variable type. All named global
variable locations are separate from numbered global variable locations. Named integer
locations are separate from numbered integer locations; named float locations are
separate from numbered float locations, etc. The named integer location that has a
location number of 37, for example, and the numbered integer location that has the
location number of 37 are not the same location. In Figure 1, below, memory locations
are represented as boxes or “cells” in a table in an attempt to illustrate the separation of
global memory areas by global variable type (numbered or named) and by data type.

11/33

Figure 1 – A Representation of the Global Memory Area

(not all memory locations are shown)

Numbered
Boolean
Locations ->

Location 0 Location 1 Location 2 Location 3 Location 4 Locations

5.. 6..7…

Additional
Locations
Up to 9999

Numbered
Integer
Locations ->

Location 0

Location 1

Location 2

Location 3

Location 4

Locations
5.. 6..7…

Additional
Locations
Up to 9999

Numbered
Float
Locations ->

Location 0

Location 1

Location 2

Location 3

Location 4

Locations
5.. 6..7…

Additional
Locations
Up to 9999

Numbered
Double
Locations ->

Location 0

Location 1

Location 2

Location 3

Location 4

Locations
5.. 6..7…

Additional
Locations
Up to 9999

Numbered
String
Locations ->

Location 0

Location 1

Location 2

Location 3

Location 4

Locations
5.. 6..7…

Additional
Locations
Up to 9999

Named
Boolean
Locations ->

Location 0

Location 1

Locations 2
… 3… 4…

Additional
Locations
Up to 2999

Named
Integer
Locations ->

Location 0

Location 1

Locations 2
… 3… 4…

Additional
Locations
Up to 2999

Named
Float
Locations ->

Location 0

Location 1

Location 2
… 3… 4…

Additional
Locations
Up to 2999

Named
Double
Locations ->

Location 0

Location 1

Location 2
… 3… 4…

Additional
Locations
Up to 2999

Named
String
Locations ->

Location 0

Location 1

Location 2
… 3… 4…

Additional
Locations
Up to 2999

12/33

One key point about named global variables is that, after being created by name, they can
be referred to, for the purpose of retrieving values, either by name or by number. The
location number associated with a named global variable should not be confused with the
location number associated with a numbered global variable.

For example, consider two float global variables, one numbered and one named. Let us
presume that the numbered float global variable is number 37 (it is at float element
location 37) and that the value stored at float location 37 is 789.246. Let us further
presume that the named float location is named “My Float” and that the value stored at
this location is 444.345. Finally, let us presume that named float location “My Float” is
named float location number 37. Graphically, this situation could be represented as
shown in Figure 2 below, in which the small boxes that contain numbers represent
memory locations:

444.345

This box represents the
named float location called
“My Float”. This named
float location happens to be
named float location
number 37.

789.246

This box represents
numbered float location
37.

122.500

564.310

These boxes represent
other numbered float

locations

781.000

956.120

These boxes represent
other named float

locations

Figure 2 – A Representation of the Difference between Numbered
and Named Global Variable Locations

 (Named locations can be referred to by both name and by location number. A
named variable and a numbered variable can have the same location number

without causing any conflict. See also Figure 1, above.)

13/33

From Figure 2 we can see that:

1.) Named global locations can be referred to either by their name or by their
number. The name and the number both refer to the same location in memory for
named global variables. In Figure 2 the name “My Float” and “named float at
location number 37” both refer to the same space in memory.

2.) Numbered global locations can be referred to by their number only. Named
locations have an associated number but numbered locations do not have an
associated name.

3.) A named location and a numbered location that have the same location number do
not refer to the same location. This is because one refers to a named global
variable while the other refers to a numbered global variable. Named float
location number 37 is not the same location in memory as numbered float
location number 37. Just as the address “37 Main Street” is not the same location
as “37 Oak Street”, so named global variable location 37 is not the same location
in memory as numbered global variable location 37.

EasyLanguage Wrapper Functions
< Top > (Alt  = Back)

To make it easier to understand the EasyLanguage to DLL interface, demonstration
EasyLanguage user functions are provided. Also, a demonstration user function has been
provided that retrieves the version number of the GlobalVariable.dll file. These
EasyLanguage functions are demonstrated below. (Additional demonstration code is
contained in the workspace included in the GlobalVariable.dll download zip package.)

Set Wrapper Functions
< Top > (Alt  = Back)

Set wrapper functions return an integer value that indicates whether the DLL function
was able to successfully set (store) a value into the global memory location specified.
The return value will be either equal to the element location number of the location set or
will be a negative number to indicate an error. This is true of both numbered global
variables and named global variables (see Figure 1 and related discussion, above). The
value returned by a set function should always be checked by the user to ensure that the
set operation was successful and that the called function did not return a negative
number, which would indicate an error.

14/33

Setting a Numbered Global Variable
< Top > (Alt  = Back)

GVSetBoolean
BoolSet = GVSetBoolean(1000, TRUE) ;

{ Where 1000 is the global variable element location, and TRUE is the stored value. If
the EasyLanguage variable BoolSet is set to 1000 by this assignment statement then
Boolean element location number 1000 was successfully set to TRUE. If BoolSet is set
to –1 by the statement then an error occurred. The value of BoolSet should be checked
after this statement is executed to ensure that an error has not occurred. }

GVSetInteger
IntRtn = GVSetInteger(0, 1500) ;

{ Where 0 is the global variable element location, and 1500 is the stored value. If the
EasyLanguage variable IntRtn is set to 0 by this assignment statement then element
location number 0 was successfully set to 1500. If IntRtn is set to –1 by the statement
then an error occurred. The value of IntRtn should be checked by the user after this
statement is executed to ensure that an error has not occurred. }

GVSetFloat
SetRet = GVSetFloat(5, Close[1]) ;

{ Where 5 is the global variable element location, and the Close one bar ago is the stored
value. If the EasyLanguage variable SetRet is set to 5 by this assignment statement then
element location number 5 was successfully set to the value of the Close one bar ago. If
SetRet is set to –1 by the statement then an error occurred. The value of SetRet should be
checked by the user after this statement is executed to ensure that an error has not
occurred. }

GVSetDouble
RtnVal = GVSetDouble(1500, Close[1] + Open[1]) ;

{ Where 1500 is the global variable element location, and the value of the expression
Close[1] + Open[1] is the stored value. If the EasyLanguage variable RtnVal is
set to 1500 by this assignment statement then element location number 1500 was
successfully set to the value of Close[1] + Open[1]. If RtnVal is set to –1 by the
statement then an error occurred. The value of RtnVal should be checked by the user
after this statement is executed to ensure that an error has not occurred. }

GVSetString

15/33

Output = GVSetString(MyStringLoc, “Text to be stored in GV”) ;

{ Where the EasyLanguage variable MyStringLoc contains the global variable element
location to be set, and “Text to be stored in GV” is the string to be stored. If the
EasyLanguage variable Output is set to MyStringLoc by this assignment statement then
element location number MyStringLoc was successfully set to “Text to be stored in GV”.
If Output is set to –1 by the statement then an error occurred. The value of Output should
be checked by the user after this statement is executed to ensure that an error has not
occurred. }

Setting a Named Global Variable
< Top > (Alt  = Back)

For all of the EasyLanguage functions used for setting named global variables that are
detailed below, error codes are as follows: A return value of –1 indicates that the global
variable name was not legal (it was too long or was a null (empty) string). A return value
of –2 indicates that all global named variable locations of the specified data type have
been used and none is available for assignment. A return value of –3 indicates some
other type of error. A non-negative return value indicates that there was no error. In this
case the non-negative value returned is the numeric “element location” of the named
variable. The element locations associated with named global variables have no
relationship to the element locations of numbered global variables (see Figure 1 and
related discussion, above).

GVSetNamedBool
NmdBoolSet = GVSetNamedBool("My Order Filled", TRUE) ;

{ Where “My Order Filled” is the global integer variable name, and TRUE is the stored
value. If the EasyLanguage variable BoolRtn is set to a non-negative integer value by
this assignment statement then a global variable was created with the name “My Order
Filled” and this variable was set to TRUE. If BoolRtn is set to a negative number by the
statement then an error occurred. The value of BoolRtn should be checked after the
statement is executed to ensure that an error has not occurred. }

GVSetNamedInt
IntVRtn = GVSetNamedInt(“My Order Number”, 12345) ;

{ Where “My Order Number” is the global integer variable name, and 12345 is the stored
value. If the EasyLanguage variable IntV is set to a non-negative integer value by this
assignment statement then a global variable was created with the name “My Order
Number” and this variable was set to 12345. If IntV is set to a negative number by the

16/33

statement then an error occurred. The value of IntV should be checked after the
statement is executed to ensure that an error has not occurred. }

GVSetNamedFloat
PrevCRtn = GVSetNamedFloat(“Previous Close”, Close[1]) ;

{ Where “Previous Close” is the global float variable name, and the Close one bar ago is
the stored value. If the EasyLanguage variable PrevCRtn is set to a non-negative integer
value by this assignment statement then a global variable was created with the name
“Previous Close” and this variable was set to the value of the Close one bar ago. If
PrevCRtn is set to a negative number by the statement then an error occurred. The value
of PrevCRtn should be checked after the statement is executed to ensure that an error has
not occurred. }

GVSetNamedDouble
ReturnVal = GVSetNamedDouble(GetSymbolName, Average(C, 10)) ;

{ Where the string returned by the EasyLanguage function GetSymbolName is the
name of the global double-precision variable, and the value of the expression Average(
C, 10) is the stored value. If the EasyLanguage variable ReturnVal is set to a non-
negative integer value by this assignment statement then a global variable was created
with the name returned by the function GetSymbolName and this variable was set to
the value of the expression Average(C, 10). If ReturnVal is set to a negative
number by the statement then an error occurred. The value of ReturnVal should be
checked after the statement is executed to ensure that an error has not occurred. }

GVSetNamedString
ErrorTest = GVSetNamedString(“String 1”, “Some text…”) ;

{ Where the string “String 1” is the global double variable name, and the string “Some
text…” is the stored value. If the EasyLanguage variable ErrorTest is set to a non-
negative integer value by this assignment statement then a global variable was created
with the name “String 1” and this variable was set to the value “Some text…”. If
ErrorTest is set to a negative number by the statement then an error occurred. The value
of ErrorTest should be checked after the statement is executed to ensure that an error has
not occurred. }

Resetting Named Global Variables
< Top > (Alt  = Back)

17/33

DLL functions that “reset” named global variables have been provided, as a DLL coding
demonstration, for each data type. Any one of these functions illustrate how code may be
written that sets all of the variable names of a particular data type to NULL and all of the
values of a particular type to their initial values. (See Table 1, above, for a list of the
initial values of named variables of each data type.)

It is important to note that the process of “resetting” the named variables of a particular
data type will “erase” all named variables of that type (Boolean, integer, float, double, or
string). Resetting named variables of one data type does not affect named variables of
any other data type. There are demonstration reset functions in the DLL for each data
type.

The GlobalVariable.dll reset functions return the number of named variable locations
reset. A return value of 0 (zero) indicates that no named locations were reset. This can
occur if all named global locations of a particular data type are already set to their default
values (all names are NULL).

The EasyLanguage wrapper functions that can be used to call GlobalVariable.dll reset
functions are illustrated in the examples below:

GVResetAllNmdBools
ResetBoolRtn = GVResetAllNmdBools ;

{ If the EasyLanguage variable ResetBoolRtn is assigned a positive integer value by this
statement then the value found in ResetBoolRtn after the execution of this statement is
the number of named Boolean global variables reset (by having their name set to NULL
and their value set to FALSE). If the EasyLanguage variable ResetBoolRtn is set to 0
(zero) by this statement then no named locations were reset by this statement. }

GVResetAllNmdInts
ResetMyInts = GVResetAllNmdInts ;

{ If the EasyLanguage variable ResetMyInts is assigned a positive integer value by this
statement then the value found in ResetMyInts after the execution of this statement is the
number of named integer global variables reset (by having their name set to NULL and
their value set to 0). If the EasyLanguage variable ResetMyInts is set to 0 (zero) by this
statement then no named locations were reset by this statement. }

GVResetAllNmdFlts
NumFltsReset = GVResetAllNmdFlts ;

{ If the EasyLanguage variable NumFltsReset is assigned a positive integer value by this
statement then the value found in NumFltsReset after the execution of this statement is

18/33

the number of named float global variables reset (by having their name set to NULL and
their value set to 0.0). If the EasyLanguage variable NumFltsReset is set to 0 (zero) by
this statement then no named locations were reset by this statement. }

GVResetAllNmdDbls
NumDblsErsd = GVResetAllNmdDbls ;

{ If the EasyLanguage variable NumDblsErsd is assigned a positive integer value by this
statement then the value found in NumDblsErsd after the execution of this statement is
the number of named double global variables reset (by having their name set to NULL
and their value set to 0.0). If the EasyLanguage variable NumDblsErsd is set to 0 (zero)
by this statement then no named locations were reset by this statement. }

GVResetAllNmdStrs
ResStrsRtn = GVResetAllNmdStrs ;

{ If the EasyLanguage variable ResStrsRtn is assigned a positive integer value by this
statement then the value found in ResStrsRtn after the execution of this statement is the
number of named string global variables reset (by having their name set to NULL and
their value set to NULL). If the EasyLanguage variable ResStrsRtn is set to 0 (zero) by
this statement then no named locations were reset by this statement. }

Get Wrapper Functions
< Top > (Alt  = Back)

Get wrapper functions that are used to get values from numbered global variable
locations (as opposed to Get functions used to retrieve values from named global variable
locations) return the value stored at the global variable location specified in the function
call. If there is an error then either a –1 or a NULL (empty) string will be returned to
indicate an error condition. In the case of Get wrapper functions used to retrieve a
number, a –1 will be returned if there is an error. In the case of the Get function used to
retrieve a string (GVGetString), a NULL (empty) string will be returned in the case of an
error. There is no way to distinguish between a return value that is retrieved from global
memory and is equal to –1 (or equal to the NULL string) and an error condition.

Get wrapper functions used to get values from named global variable locations return the
value stored at the global variable location specified in the function call or a user-
specified value to indicate an error condition. The caller passes the desired error
indication value to the function as a parameter. The functions used with numbered global
variables, unlike those used with named global variables, do not allow the user to set the
error code.

19/33

There is no way to distinguish between a return value that is retrieved from global
memory and is equal to the user-specified error indication value and an error condition
(both cases return a value equal to the user-specified error condition indication value).
For this reason, care should be exercised when choosing the value to be returned by the
function when an error occurs. The error indication value should be selected, if possible,
to be a value that is outside the range of acceptable values for the global variable. For
example, if a value that is known to have a range between -100 and 100 is being retrieved
from a global variable, the user may wish to specify a number outside this range (such as
999) as the error return value.

Getting the Value Contained in a Numbered Global Variable Location
< Top > (Alt  = Back)

GVGetBoolean
BoolGet = GVGetBoolean(1000) ;

{ Assign to the EasyLanguage variable BoolGet the Boolean value at element location
1000. If BoolGet is assigned the value TRUE by this statement then the value found at
Boolean element location 1000 is the value TRUE. If BoolGet is assigned FALSE by
this statement then an error may have occurred (either an error occurred or the value
found at element location 1000 was the value FALSE). }

GVGetInteger
MyInt = GVGetInteger(0) ;

{ Assign to the EasyLanguage variable MyInt the integer value at element location 0. If
MyInt is assigned a value other than –1 by this statement then the value found at integer
element location 0 is the value found in MyInt. If MyInt is assigned –1 by this statement
then an error may have occurred (either an error occurred or the value found at element
location 0 was –1). }

GVGetFloat
FltVal = GVGetFloat(5) ;

{ Assign to the EasyLanguage variable FltVal the float value found at element location 5.
If FltVal is assigned a value other than –1 by this statement then the value found at float
element location 5 is the value found in FltVal. If FltVal is assigned –1 by this statement
then an error may have occurred (either an error occurred or the value found at element
location 5 was –1). }

GVGetDouble
ValRetn = GVGetDouble(105) ;

20/33

{ Assign to the EasyLanguage variable ValRetn the double-precision value found at
element location 105. If ValRetn is assigned a value other than –1 by this statement then
the value found at float element location 105 is the value found in ValRetn. If ValRtn is
assigned –1 by this statement then an error may have occurred (either an error occurred
or the value found at element location 105 was –1). }

GVGetString
MyStr = GVGetString(5005) ;

{ Assign to the EasyLanguage variable MyStr the string value found at element location
5005. If MyStr is assigned a value other than the NULL string (an empty string) by this
statement then the value found at sting element location 5005 is the value found in
MyStr. If MyStr is assigned a NULL string (an empty string) by this statement then an
error may have occurred (either an error occurred or the value found at element location
5005 was the NULL string). The EasyLanguage variable MyStr must be a string type
variable in order to receive the string returned by the GVGetString function. }

Getting the Value Contained in a Named Global Variable Location
< Top > (Alt  = Back)

GVGetNamedBool
NmdBoolGet = GVGetNamedBool("My Order Filled") ;

{ Assign to the Boolean EasyLanguage variable NmdBoolGet the Boolean value stored
in named Boolean global variable “My Order Filled”. If NmdBoolGet is assigned a value
by this statement, and a run-time error is not generated, then the value found in the global
Boolean storage location named “My Order Filled” is the value found in NmdBoolGet.
Error conditions will be indicated by the generation of a run-time error in TradeStation. }

GVGetNamedBoolByNum
BoolByNum = GVGetNamedBoolByNum(37) ;

{ Assign to the EasyLanguage variable BoolByNum the Boolean value stored in named
Boolean global variable the location number of which is 37. If BoolByNum is assigned a
value by this statement, and no run-time error occurs, then the value found in global
named Boolean location number 37 is the value found in BoolByNum. An error
condition will be indicated by generation of a run-time error in TradeStation. Location
numbers for global named Boolean variables are returned by the GVSetNamedBool
function. }

GVGetNamedInt

21/33

MyInt = GVGetNamedInt(“An Int Var’s Name”, -999) ;

{ Assign to the EasyLanguage variable MyInt the integer value stored in named integer
global variable “An Int Var’s Name”. If MyInt is assigned a value other than –999 by
this statement then the value found in the global integer storage location named “An Int
Var’s Name” is the value found in MyInt. If MyInt is assigned the value –999 by this
statement then an error may have occurred (either an error occurred or the value found in
the integer location “An Int Var’s Name” was –999). }

GVGetNamedIntByNum
IntVal = GVGetNamedIntByNum(10, -999) ;

{ Assign to the EasyLanguage variable IntVal the integer value stored in named integer
global variable the location number of which is 10. If IntVal is assigned a value other
than –999 by this statement then the value found in global named integer location number
10 is the value found in IntVal. If IntVal is assigned the value –999 by this statement
then an error may have occurred (either an error occurred or the value found in the
integer location 10 was –999). Location numbers for global named integer variables are
returned by the GVSetNamedInt function. }

GVGetNamedFloat
TheClose = GVGetNamedFloat(“Closing Value”, -999.99) ;

{ Assign to the EasyLanguage variable TheClose the value stored in named floating-point
global variable “Closing Value”. If TheClose is assigned a value other than –999.99 by
this statement then the value found in the global integer storage location named “Closing
Value” is the value found in TheClose. If TheClose is assigned the value –999.99 by this
statement then an error may have occurred (either an error occurred or the value found in
the location “Closing Value” was –999.99). }

GVGetNamedFltByNum
Boat = GVGetNamedFltByNum(10, -999.999) ;

{ Assign to the EasyLanguage variable Boat the float value stored in the named float
global variable the location number of which is 10. If Boat is assigned a value other than
–999.999 by this statement then the value found in global named float location number
10 is the value found in Boat. If Boat is assigned the value –999.999 by this statement
then an error may have occurred (either an error occurred or the value found in named
float location 10 was –999.999). Location numbers for global named float variables are
returned by the GVSetNamedFloat function. }

GVGetNamedDouble
DoubleDuty = GVGetNamedDouble(“Super Algorithm”, ErrorCode) ;

{ Assign to the EasyLanguage variable DoubleDuty the value stored in global named
double-precision variable “Super Algorithm”. If DoubleDuty is assigned a value other

22/33

than that of the variable ErrorCode by this statement then the value found in the global
double storage location named “Super Algorithm” is the value found in DoubleDuty. If
DoubleDuty is assigned the value of the variable ErrorCode by this statement then an
error may have occurred (either an error occurred or the value found in the location
“Super Algorithm” was equal to the value of the variable ErrorCode). }

GVGetNamedDblByNum
Dual = GVGetNamedDblByNum(50, -98765.9876543) ;

{ Assign to the EasyLanguage variable Dual the double value stored in the global named
double variable the loacation number of which is 50. If Dual is assigned a value other
than –98765.9876543 by this statement then the value found in the global named double
location number 50 is the value found in Dual. If Dual is assigned the value –
98765.9876543 by this statement then an error may have occurred (either an error
occurred or the value found in named double location 50 was –98765.9876543).
Location numbers for global named double variables are returned by the
GVSetNamedDouble function. }

GVGetNamedString
Twine = GVGetNamedString(“Rope”, “Error Message”) ;

{ Assign to the EasyLanguage string variable Twine the value stored in global named
string variable “Rope”. If Twine is assigned a value other than “Error Message” by this
statement then the value found in the global string storage location named “Rope” is the
value found in Twine. If Twine is assigned the string “Error Message” by this statement
then an error may have occurred (either an error occurred or the value found in the
location “Rope” was “Error Message”). The EasyLanguage variable Twine must be a
string type variable in order to receive the string returned by the GVGetNamedString
function. }

GVGetNamedStrByNum
ValOfStr = GVGetNamedStrByNum(10, “My error message”) ;

{ Assign to the EasyLanguage string variable ValOfStr the string value stored in the
global named string variable the number of which is 10. If ValOfStr is assigned a value
other than “My error message” by this statement then the value found in the global
named string location number 10 is the value found in ValOfStr. If ValOfStr is assigned
the value “My error message” by this statement then an error may have occurred (either
an error occurred or the value found in the named string at location 10 was “My error
message”). Location numbers for global named string variables are returned by the
GVSetNamedString function. }

23/33

Getting the Name of a Named Global Variable
< Top > (Alt  = Back)

GVGetBoolNameByNum
BoolNm = GVGetBoolNameByNum(5, "Get Bool name BY NUM Error!") ;

{ Assign to the EasyLanguage string variable BoolNm the name of the global named
Boolean the location number of which is 5. If BoolNm is assigned a value other than
“Get Bool name BY NUM Error!” by this statement then the name of the global named
Boolean at location number 5 is the value found in BoolNm. If BoolNm is assigned the
value “Get Bool name BY NUM Error!” by this statement then an error may have
occurred (either an error occurred or the name of the named Boolean at location 5 was
“Get Bool name BY NUM Error!”). Location numbers for global named Boolean
variables are returned by the GVSetNamedBool function. }

GVGetIntNameByNum
MyVarName = GVGetIntNameByNum(10, “No name retrieved!”) ;

{ Assign to the EasyLanguage string variable MyVarName the name of the global named
integer the location number of which is 10. If MyVarName is assigned a value other than
“No name retrieved!” by this statement then the name of the global named integer at
location number 10 is the value found in MyVarName. If MyVarName is assigned the
value “No name retrieved!” by this statement then an error may have occurred (either an
error occurred or the name of the named integer at location 10 was “No name
retrieved!”). Location numbers for global named integer variables are returned by the
GVSetNamedInt function. }

GVGetFltNameByNum
MyFloatName = GVGetFltNameByNum(10, “Error message”) ;

{ Assign to the EasyLanguage string variable MyFloatName the name of the global
named float the location number of which is 10. If MyFloatName is assigned a value
other than “Error message” by this statement then the name of the global named float at
location number 10 is the value found in MyFloatName. If MyFloatName is assigned the
value “Error message” by this statement then an error may have occurred (either an error
occurred or the name of the named float at location 10 was “Error message”). Location
numbers for global named float variables are returned by the GVSetNamedFloat function.
}

GVGetDblNameByNum
MyDblNm = GVGetDblNameByNum(103, “Problem”) ;

{ Assign to the EasyLanguage string variable MyDblNm the name of the global named
double the location number of which is 103. If MyDblNm is assigned a value other than
“Problem” by this statement then the name of global named double location number 103

24/33

is the value found in MyDblNm. If MyDblNm is assigned the value “Problem” by this
statement then an error may have occurred (either an error occurred or the name of
named double location 103 was “Problem”). Location numbers for global named double
variables are returned by the GVSetNamedDouble function. }

GVGetStrNameByNum
StringV = GVGetStrNameByNum(375, “E”) ;

{ Assign to the EasyLanguage string variable StringV the name of the global named
string the location number of which is 375. If StringV is assigned a value other than “E”
by this statement then the name of the global named string at location number 375 is the
value found in StringV. If StringV is assigned the value “E” by this statement then an
error may have occurred (either an error occurred or the name of the named string at
location 375 was “E”). Location numbers for global named string variables are returned
by the GVSetNamedString function. }

GVGetVersion Wrapper Function
< Top > (Alt  = Back)

GVGetVersion
Version = GVGetVersion ;

{ Assign to the EasyLanguage string variable Version the value returned by the function
GVGetVersion. For GlobalVariable.dll version 2.2, the string variable Version should be
assigned the string “2.20.00.0000” by this statement. }

Calling GV Functions Without Using the EasyLanguage Wrapper Functions
< Top > (Alt  = Back)

The following example EasyLanguage indicator code illustrates the calling of the
GlobalVariable.dll functions GV_SetInteger() and GV_GetInteger() without the use of
the GVSetInteger and GVGetInteger EasyLanguage wrapper functions. Calling the DLL
functions directly, without using the EasyLanguage wrapper functions, avoids the
LastBarOnChart checks that are built into the wrapper functions, as may be desirable
when attempting to store or retrieve a global variable value on an historical bar.

25/33

DefineDLLFunc: "GlobalVariable.dll", int, "GV_GetInteger", int ;

DefineDLLFunc: "GlobalVariable.dll", int, "GV_SetInteger", int,
int ;

inputs:

 ElementLocation(1),

 GVValue(CurrentBar) ;

variables:

 SetRtnVal(-1),

 GetRtnVal(-1) ;

SetRtnVal = GV_SetInteger(ElementLocation, GVValue) ;

GetRtnVal = GV_GetInteger(ElementLocation) ;

Plot1(GetRtnVal, “Get”) ;

Demonstration Studies and Workspaces
< Top > (Alt  = Back)

Included with the GlobalVariable.dll C++ code are EasyLanguage studies and two
workspaces.

Installation
< Top > (Alt  = Back)

1.) To begin, extract the file “GlobalVariable.dll” from the Global Variable download
zip file and place it into a subdirectory of your choice. Then move this file from the
subdirectory in which you placed it to your installation’s equivalent to the following
subdirectory (substitute your current build number for the letters WXYZ and your current
version number for 8.x):

C:\Program Files\TradeStation 8.x (Build WXYZ)\Program\

26/33

For example, your installation might be something like this:

C:\Program Files\TradeStation 8.0 (Build 1869)\Program\

2.) Next, import the studies and functions from the ELD file that is included in the zip
file. Be sure to import the studies and functions contained in the supplied ELD file
before attempting to open either of the demonstration workspaces. Please note: some
real-time anti-virus/firewall/internet security (AV/IS) products may interfere with the
importation of ELD files. If you experience difficulty importing the studies and functions
from the ELD file, follow these steps:

a.) Disable the AV/IS product.
b.) Deselect the option to load the AV/IS product at Windows start-up if this option

was previously selected in the AV/IS software.
c.) Reboot the computer.
d.) Import the ELD file.
e.) Re-select the option to load the AV/IS product at Windows start-up if desired.
f.) Re-start the AV/IS product.
g.) Reboot the computer and ensure that the AV/IS product is loaded at Windows

start-up (if this option was selected in Step e.) above).

3.) Extract the two demonstration workspaces, GV Demo Workspace 1.tsw and GV Demo
Workspace 2.tsw, from the zip file and place them into your installation’s equivalent to
the following subdirectory for easy access (substitute your current build number for the
letters WXYZ and your current version number for 8.x):

C:\Program Files\TradeStation 8.x (Build WXYZ)\MyWork\

4.) View the ReadMe.txt file that is included in the downloaded zip package.

5.) The additional C++ code and project files included in the zip file can be viewed in
Visual Studio® 6 in the normal manner.

27/33

GV 2.2 Demo Workspace 1
< Top > (Alt  = Back)

Note: Before attempting to open either of the two demonstration workspaces, close any
workspaces that you might already have open that use global variables (workspaces you
may have developed for a previous version of Global Variables). Also, have only one of
the two demonstration workspaces open at any given time. Do not attemtpt to view GV
2.2 Demo Workspace 1 and GV 2.2 Demo Workspace 2 at the same time or the
demonstration analysis techniques may not work correctly. The two demonstration
workspaces may interfere with one another as they can use the same areas in global
memory.

Included in the first demonstration workspace, GV Demo Workspace 1, are two charts
and two RadarScreens. The charts share some global variables with one another.
Similarly, the RadarScreens share some global variables.

Let’s look at the charts first. The 1-minute chart contains an indicator that sets some
numbered global variables. The values of a “fast” and “slow” moving average are placed
into global memory. The other chart, the 500-tick chart, retrieves these moving average
values from global memory and assigns these values to local (EasyLanguage) variables.
These values are then plotted. In this way, values calculated on the 1-minute chart are
transferred to, and plotted on, the 500-tick chart.

At times the Global Variables that are stored or retrieved may be one tick or more behind
what you might expect. This is because it takes one tick in the sending chart to run the
code that stores values into global variables. Then it takes at least one additional tick for
the value to be retrieved by the receiving chart.

The studies that are applied to the two charts are described below:

GV Set MA Values Indicator:
This indicator is applied to the 1-minute chart.
Inputs:
GVLocationFast(1), { global variable element location at which to store the GVFastMA
value }
GVLocationSlow(2), { global variable element location at which to store the
GVSlowMA value }
GVFastLen(10), { length of the "fast" moving average }
GVSlowLen(50) ; { length of the "slow" moving average }

28/33

GV Get MA Values Indicator:
This indicator retrieves the moving average values that are placed into global memory by
GV Set MA Values, the values stored by the 1-minute chart in “real-time”. It plots the
values on the 500-tick chart, in “real-time” (and not on historical bars).

Note: Values are plotted on the 500-tick chart only at the end of the chart (on bars
after LastBarOnChart becomes true, at the far right of the chart). Historical values
should not be plotted. For this reason, this example is best viewed when live market
data is flowing.

Let’s now turn our attention to the two RadarScreens in the workspace, the RadarScreens
labeled MA Sender and MA Retriever. These RadarScreens demonstrate the use of
named global variables. They demonstrate a method of passing values generated by
symbols of one bar interval, on one RadarScreen, to a second RadarScreen containing the
same symbols but of a different bar interval. The value of the 200-day moving average is
calculated for all of the symbols in the MA Sender RadarScreen. This 200-day moving
average value is then passed to the MA Retriever RadarScreen, which contains the same
symbols as the MA Sender RadarScreen, but which has the bar interval of all symbols set
to 15 ticks.

If GV 2.2 Demo Workspace 1 is opened before or after regular market hours, it may be
necessary to reload the symbols on the MA Retriever RadarScreen in order to ensure that
the latest values sent by the MA Sender RadarScreen are retrieved from global memory.
If this is necessary, it should be done after the completion of calculation of values in the
MA Sender RadarScreen. To reload the data for all symbols in the MA Retriever
RadarScreen, select the “Symbol” column of this RadarScreen by clicking the “Symbol”
column heading in the gray area then, with all symbols in this column selected, click on
the View menu and select Refresh.

The indicators MA Sender and MA Retriever demonstrate two things. First, that the
symbol name, retrieved automatically using the EasyLanguage reserved word Symbol,
can be used as the name of the named global variable. This allows the passing of values
from one RadarScreen to the other without the user ever having to choose or manually
enter a global variable name or number. Second, these indicators demonstrate how a
value of interest based on values of one bar interval can be retrieved by symbols with
another bar interval for use in current calculations. This use of data streams of different
bar intervals in RadarScreen is similar in principle to the use of multiple data streams in a
single chart in Charting, albeit without the ability to reference historical values of the
“second data stream”.

29/33

Here is a description of the indicators that have been applied to the two RadarScreens:

MA Sender Indicator (applied to the daily bar interval symbols in the MA Sender
RadarScreen):
Inputs:
MALength(200) – The number of bars to be used in the daily moving average
calculation.
This indicator displays the calculated moving average and sends the calculated values to
global variable storage locations. Each row of the RadarScreen stores the moving
average value calculated for that row in a global variable that has the symbol for its
name. For example, the AXP row stores its moving average value in a global variable
named “AXP”.

MA Retriever Indicator (applied to the 15-tick bar interval symbols in the MA Retriever
RadarScreen):
This indicator retrieves the moving average values that were placed into global memory
by the indicator MA Sender. Each row of the RadarScreen uses its symbol name to
retrieve the global variable value that is intended for it. For example, the AXP row
retrieves its moving average value from the global variable named “AXP”.

Both of these indicators contain the following statement:
Value1 = Ticks ; { force RadarScreen to update every tick }

This statement is used, as the comment in curly braces indicates, to force the indicators to
update every tick when used in RadarScreen.

GV 2.2 Demo Workspace 2
< Top > (Alt  = Back)

After you have finished viewing GV 2.2 Demo Workspace 1, it should be closed, as
should any other applications that use global variables, before any attempt is made to
open GV 2.2 Demo Workspace 2. Once all workspaces that use global variables have
been closed, GV 2.2 Demo Workspace 2 may be opened. Allow a few seconds for all of
the values in the OptionStation Analysis window to load. If you are viewing GV 2.2
Demo Workspace 2 first, without previously having viewed GV 2.2 Demo Workspace 1,
be sure that you have imported the ELD file included in the download package before
attempting to open the workspace.

30/33

Once values are visible in the OptionStation analysis window, click anywhere in either of
the QQQ charts that are included in the workspace. Then, press the <Ctrl>-<R> key
sequence or, from the View menu, select Refresh > Reload. This will reload data on the
charts (because the same symbol is displayed in both charts, reloading either of them will
automatically reload the other). When the charts reload, some horizontal lines and text
will appear, so that the chart will resemble that shown in Figure 3, below. (The price
bars, horizontal red lines, and yellow text in the figure have been made boldface for
easier viewing in this document. In the workspace, these items are not boldface. Also,
these items are not the same colors in both charts.)

Figure 3 – The Chart in GV 2.2 Demo Workspace 2 following a Refresh

31/33

It may be necessary to change the text font applied to the charts in order to view this
demonstration clearly. To do this, right-click any piece of text and choose Format ‘Text’
from the right-click menu. To the Chart Analysis dialog box that appears asking whether
you wish to format the analysis technique, choose No. On the Font tabo of the Format
Text dialog box that then appears choose Courier New – Regular – 9 point as the desired
font. Click the check box labeled “Set as default”. Please note: This change will affect
all charts on which you use text objects. Then reload the chart (<Ctrl>-<R>).

The horizontal lines and text reflect information passed to the chart from the
OptionStation Analysis window using global variables. The indicator Option Info Sender
has been applied to both the puts and the calls in the OptionStation Analysis window (see
the column headed “OptInfo” that appears on both the call (left) and put (right) sides of
the options pane). This indicator places some values into global variables so that they can
be retrieved by Option Info Retrievr, an indicator applied to each of the charts. Among
the values placed in global memory by the Option Info Sender indicator that is applied in
OptionStation are:

1.) Options symbols
2.) Options expiration month and year information
3.) Option types (put or call)
4.) Option strike prices
5.) Option bids and asks
6.) Implied volatility based on option bids and asks

Based on user inputs, the indicator Option Info Retrievr, which has been applied to each
of the charts, retrieves information from global memory for certain options (options of
user selected type, expiration month, and expiration year). It then draws red lines at the
strike price levels for these options and labels the lines with information about the
options. The text information included for each strike price is: the option symbol, the
bid, the ask, the implied volatility of the bid, and the implied volatility of the ask.

The options information placed into global memory by the indicator Option Info Sender
is determined by the values of the following user inputs to this indicator:

ExpMonth – Numeric value representing the expiration month of the options on which
information is to be transferred to the chart. Month numbers may range from 1 to 12,

32/33

inclusive. An ExpMonth month number of 1 indicates that January option information is
desired. An ExpMonth number of 6 indicates that June option information is desired, etc.

ExpYear – Numeric value representing the four-digit expiration number of the options on
which information is to be transferred to the chart. For example, an ExpYear of 2005
indicates that options expiring in ExpMonth of 2005 is to be transferred to global
memory.

Option_Type – This input may be set to Put if information on put options is to be placed
in global memory, or may be set to Call if information on calls is desired.

To change the values of these inputs, right-click the the column heading OptInfo in the
options pane of the OptionStation Analysis window. Note: there are column headings of
OptInfo on both the call (left) side of the options pane and on the put (right) side of the
options pane. These may be separately formatted.

The options information retrieved from global memory by the indicator Option Info
Retrievr, which has been inserted into each of the charts, is determined by the values of
the following user inputs to this indicator:

ExpMonth – Numeric value representing the expiration month of the options on which
information is to be retrieved from global memory. Month numbers may range from 1 to
12, inclusive. An ExpMonth month number of 1 indicates that January option
information is desired. An ExpMonth number of 6 indicates that June option information
is desired, etc.

ExpYear – Numeric value representing the four-digit expiration number of the options on
which information is to be retrieved from global memory. For example, an ExpYear of
2005 indicates that options expiring in ExpMonth of 2005 is to be retrieved from global
memory.

Option_Type – This input may be set to Put if information on put options is to be placed
on the chart, or may be set to Call if information on calls is desired. One of the charts has
this input set to Call and the other chart has this information set to Put.

TL_Color – A numeric value or reserved word representing the desired color of the
horizontal lines plotted by the indicator.

33/33

TL_Thickness – A numeric value representing the desired thickness of the horizontal lines
plotted by the indicator. Increasing numbers will result in lines of increasing thickness.

Text_Color – A numeric value or reseved word representing the desired color of the text
placed on the horizontal lines by this indicator.

TradeStation-compatible DLL Support Resources
< Top > (Alt  = Back)

Should you have questions about the GlobalVariable.dll example, another TradeStation-
compatible DLL, or about development of your own TradeStation-compatible DLL’s,
please post them in the EasyLanguage-DLL category of TradeStation’s online support
forums, here:

http://www.tradestationsupport.com/discussions/forum.aspx?Forum_ID=213&selCategor
y=506&selType=552&selVersion=1422&selStatus=531&selSortField=1&selSortOrder=
1&selFrom=0&Page=1&

There is a short registration process required in order to access the online support forums.
After you’ve registered and logged in, simply click on the link (or button) that says “New
Topic” to go to the form on which you can enter your question. When completing the
new topic form, be sure to select “EasyLanguage-DLL” as the category for your question.

The Help menu in TradeStation provides an alternative route to the online
EasyLanguage-DLL Support Forum. Just click Help on the main TradeStation menu and
select “EasyLanguage-DLL Support Forum” from the Help menu.

The latest documentation of the EasyLanguage Extension SDK is also available through
the TradeStation Help menu, as mentioned above (click TradeStation Help Menu 
TradeStation User Guide  Contents Tab  EasyLanguage Reference  Books 
EasyLanguage Extension SDK).

http://www.tradestationsupport.com/discussions/forum.aspx?Forum_ID=213&selCategory=506&selType=552&selVersion=1422&selStatus=531&selSortField=1&selSortOrder=1&selFrom=0&Page=1&�
http://www.tradestationsupport.com/discussions/forum.aspx?Forum_ID=213&selCategory=506&selType=552&selVersion=1422&selStatus=531&selSortField=1&selSortOrder=1&selFrom=0&Page=1&�
http://www.tradestationsupport.com/discussions/forum.aspx?Forum_ID=213&selCategory=506&selType=552&selVersion=1422&selStatus=531&selSortField=1&selSortOrder=1&selFrom=0&Page=1&�

	GVGetVersion Wrapper Function
	General
	DLL Initialization
	Error Codes
	Global Memory Structure and Organization
	Set Wrapper Functions
	Get Wrapper Functions
	GVGetVersion Wrapper Function
	Demonstration Studies and Workspaces
	GV Set MA Values Indicator:
	GV Get MA Values Indicator:
	MA Sender Indicator (applied to the daily bar interval symbols in the MA Sender RadarScreen):
	MA Retriever Indicator (applied to the 15-tick bar interval symbols in the MA Retriever RadarScreen):

