Excel Link DLL
ELExcel.dll - Version 1.3
Documentation
Important Information and Disclaimer:

TradeStation Securities, Inc. seeks to serve institutional and active traders. Please be advised that active trading is generally not appropriate for someone of limited resources, limited investment or trading experience, or low risk tolerance, or who is not willing to risk at least $50,000 of capital.

This book discusses in detail how TradeStation is designed to help you develop, test and implement trading strategies. However, TradeStation Securities does not provide or suggest trading strategies. We offer you unique tools to help you design your own strategies and look at how they could have performed in the past. While we believe this is very valuable information, we caution you that simulated past performance of a trading strategy is no guarantee of its future performance or success. We also do not recommend or solicit the purchase or sale of any particular securities or securities derivative products. Any securities symbols referenced in this

book are used only for the purposes of the demonstration, as an example ---- not a recommendation.

Finally, this book shall discuss automated electronic order placement and execution. Please note that even though TradeStation has been designed to automate your trading strategies and deliver timely order placement, routing and execution, these things, as well as access to the system itself, may at times be delayed or even fail due to market volatility, quote delays, system and software errors, Internet traffic, outages and other factors.

All proprietary technology in TradeStation is owned by TradeStation Technologies, Inc., an affiliate of TradeStation Securities, Inc. The order execution services accessible from within TradeStation are provided by TradeStation Securities, Inc. pursuant to a technology license from

its affiliate and its authority as a registered broker-dealer and introducing broker. All other features and functions of TradeStation are provided directly by TradeStation Technologies.

Excel® is a registered trademark of the Microsoft Corporation.

TradeStation® and EasyLanguage® are registered trademarks of TradeStation Technologies, Inc.

"TradeStation," as used in this document, should be understood in the foregoing

context.

Options trading is not suitable for all investors. Your account application to trade options will be considered and approved or disapproved based on all relevant factors, including your trading experience. Automated trading, as it relates to direct-access electronic placement and execution of equity options trades, requires manual one-click verification before order is sent. Please visit www.TradeStation.com to view the document titled Characteristics and Risks of Standardized Options.

Contents
1Overview

1General Description

1Computer System Requirements

2EasyLanguage Wrapper Functions

3ELXL_Initialize

4ELXL_WithSheet

5ELXL_WithSheetNum

5ELXL_SetCellBool

6ELXL_SetCellBoolRC

6ELXL_SetCellNumber

7ELXL_SetCellNumberRC

7ELXL_SetCellString

7ELXL_SetCellStringRC

8ELXL_GetCellBool

8ELXL_GetCellBoolRC

8ELXL_GetCellNumber

9ELXL_GetCellNumberRC

9ELXL_GetCellString

10ELXL_GetCellStringRC

10ELXL_SetCellBGClr

10ELXL_SetCellBGClrRC

11ELXL_SetCellFntClr

11ELXL_SetCellFntClrRC

12ELXL_ClearCell

12ELXL_ClearCellRC

12ELXL_ClearCellFmt

12ELXL_ClearCellFmtRC

13ELXL_ClearSheet

13ELXL_ClearSheetFmt

14Demonstration Code and Workspaces

14Contents of the Download Package

14Extracting the Zip File Contents

14ELExcel – Development Files.zip

14ELExcel – Demo Files.zip

15Installing and Running the Demonstrations

15Running ELXL Demo Workspace 1

18Running ELXL Demo Workspace 2

19Support

Overview
General Description

A dynamic-link library (DLL) can be used to extend EasyLanguage®.
DLL’s can be written in any of a variety of programming languages, including C/C++, Pascal (Delphi), and PowerBASIC®. User-developed TradeStation®-compatible DLL’s, while not part of the TradeStation platform itself, can provide function libraries that can be called from EasyLanguage analysis techniques and from other applications, external to TradeStation. DLL functions can perform actions that cannot be done easily or at all in EasyLanguage. Additionally, they might be used to speed up processing.

The purpose of the ELExcel.dll example is to demonstrate how code for a TradeStation-compatible DLL can be written in Visual C++. Additionally, ELExcel.dll is intended to demonstrate the use of the interface between EasyLanguage and external user DLL’s - the ability of EasyLanguage to call external user DLL’s - and various features of the EasyLanguage Extension Software Development Kit (SDK), including the IEasyLanguageProperties interface and the TSRuntimeErrorItem structure. The SDK, provided in DLL form in the file tskit.dll, allows user-developed DLL’s to access a chart’s price and volume data, EasyLanguage analysis technique variables, and other information. The SDK is documented separately. The documentation of the SDK is available through the TradeStation User Guide (TradeStation Help Menu -> TradeStation User Guide -> Contents tab -> EasyLanguage -> EasyLanguage Reference -> Understanding EasyLanguage -> Books -> EasyLanguage Extension SDK).
To demonstrate the capability of the TradeStation platform to use functions provided by an external DLL, ELExcel.dll uses Microsoft Office automation, a feature of Microsoft Office products like Excel, to communicate information between analysis techniques written in EasyLanguage and Excel spreadsheets. A wide variety of functions demonstrate the ability of EasyLanguage to do things like: send data of various data types to an Excel spreadsheet, retrieve data of various data types, clear the contents of cells, apply formatting to cells, and remove formatting from cells.

Computer System Requirements
The computer system requirements for ELExcel.dll are the same as those for running the TradeStation platform. Additionally, Microsoft Excel 2003 or later must be installed. Also, TradeStation version 8.2 Build 3848 or later is required in order to open the demonstration workspaces.
A list of system requirements for running the TradeStation platform can be found by following the link below. At the page that this link references, click on the link that appears under the heading "Getting Started" which says "System Requirements". Your browser must allow pop-up windows in order to see the list of system requirements.

http://www.tradestation.com/sitemap3.shtm

EasyLanguage Wrapper Functions

To make it easier to understand the EasyLanguage to DLL interface, demonstration EasyLanguage user functions are provided that “wrap” the actual calls to the DLL functions. The wrapper functions provide the ability to do the following from EasyLanguage:
· Initialize the Excel application for interaction with EasyLanguage.

· Designate a specific worksheet as the one to be used for a series of other commands.

· Place values of various data types (numbers, strings, Boolean values) into Excel cells.

· Retrieve values of various data types from Excel cells.

· Set the cell background color and font color to be used in an Excel cell.

· Clear values and formatting from a specific Excel cell or from an entire Excel worksheet.

All of the wrapper functions return the Boolean value TRUE if successful. They return FALSE if they are not able to successfully execute. Under certain circumstances, inability to execute may generate a run-time error in TradeStation.
To improve clarity, the sample syntax shown in the function descriptions below does not include any code to do error checking. However, the value returned by each call to a wrapper function should be checked to ensure that the function call was successful.

Many of the wrapper functions have two different versions – a version that addresses Excel cells by row number and column letter (“A1”, “B7”, “C10”, etc.) and a version that addresses cells by row number and column number. A column’s number corresponds to its position in the alphabet; column A is column 1, column B is column 2, etc. The functions that address cells by row number and column number are intended to make it easier to address cells in EasyLanguage loops. These functions are designated by the letters “RC” at the end of the function name. For example, the function ELXL_SetCellString addresses cells using normal row number and column letter format (“A1”, “B20”, etc.). ELXL_SetCellStringRC, on the other hand, addresses cells using the row number and column number (see sample code in detailed description of this function, below). If you would like to configure Excel so that column letters are replaced by column numbers, you can do so by following this menu sequence in Excel: Tools -> Options -> Select “General” tab -> Check the box labeled “R1C1 reference style”. Regardless of how Excel is configured, either version of each of the wrapper functions – the version that uses column letters or the version that uses column numbers – will work at all times.
Here’s a complete list of the EasyLanguage wrapper functions:

ELXL_Initialize

ELXL_WithSheet

ELXL_WithSheetNum

ELXL_SetCellString

ELXL_SetCellStringRC

ELXL_SetCellNumber

ELXL_SetCellNumberRC

ELXL_SetCellBool

ELXL_SetCellBoolRC

ELXL_GetCellString

ELXL_GetCellStringRC

ELXL_GetCellNumber

ELXL_GetCellNumberRC

ELXL_GetCellBool

ELXL_GetCellBoolRC

ELXL_SetCellBGColor

ELXL_SetCellBGColorRC

ELXL_SetCellFontColor

ELXL_SetCellFontColorRC

ELXL_ClearCell

ELXL_ClearCellRC

ELXL_ClearCellFmt

ELXL_ClearCellFmtRC

ELXL_ClearSheet

ELXL_ClearSheetFmt

Each of the wrapper function descriptions that follow begins with a few lines of EasyLanguage code that demonstrate a call to the function. These lines of code are intended to demonstrate only the syntax of a call to the function. Other lines of code may be required before the function call shown could actually be executed. For example, it is necessary to call ELXL_Initialize before any other function call is made. However, the call to ELXL_Initialize is not shown in most of the example statements included in the function descriptions.

ELXL_Initialize

variables: bool XLStarted(false) ;

XLStarted = ELXL_Initialize ;

This function initializes the automation interface to Excel. It should be called prior to other ELXL functions being called. The Excel workbook that is going to be used should already be open (manually opened) at the time that this function is called.

Only one instance of Excel should be running when ELXL_Intialize is called. More than one workbook may be open, but only one instance of Excel should be running. (To see how many instances of Excel are running, you can use the <Alt-Tab> key sequence. Separate instances of Excel will show up as large square Excel icons on the <Alt-Tab> screen. Separate workbooks will show up as icons that look like a spreadsheet with the Excel icon in the upper left-hand corner. Alternatively, the Task Manager can be launched using the <Ctrl-Alt-Del> key sequence. On the Task Manager’s “Processes” tab, each instance of Excel that is running will appear as “EXCEL.exe”. Again, only a single instance of Excel should be running when ELXL_Initialize is called, though multiple workbooks/worksheets may be open.)

ELXL_WithSheet

inputs:

string WorkbookName("Demo Workbook 2.xls"),

string WorksheetName("Sheet1") ;

variables:

bool WorksheetReady(false) ;

WorksheetReady = ELXL_WithSheet(WorkbookName, WorksheetName) ;

This function prepares a specific worksheet for use. Also, it indicates that all subsequent function calls apply to the workbook and worksheet specified in the function call. Specifying that all subsequent function calls apply to a specific workbook/worksheet makes it unnecessary to name a specific workbook/worksheet in those subsequent function calls. It also makes those subsequent calls operate faster. For example, code like the following causes “Sheet2” of the workbook “Data.xls” to become the active worksheet. The subsequent call to ELXL_SetCellString, a function that places a text string into a cell, is then automatically applied to that worksheet:

variables:

bool WorksheetReady(false),

bool SetRtn(false) ;

WorksheetReady = ELXL_WithSheet(“Data.xls”, “Sheet2”) ;
SetRtn = ELXL_SetCellString(“A1”, “Symbol Names”) ;
If it is desired to change the active workbook/worksheet, a subsequent call to ELXL_WithSheet can be made in your EasyLanguage code. The active workbook/worksheet can be changed as often as desired.

ELXL_WithSheetNum

inputs:

string WkbookName("Demo Workbook 2.xls"),

int WorksheetNum(3) ;

variables:

bool WorksheetReady(false) ;

WorksheetReady = ELXL_WithSheetNum(WkbookName, WorksheetNum) ;

This function serves the same purpose as the function ELXL_WithSheet. However, rather than specifying the sheet to use by its name, the sheet to use is specified by its “number”, as described below. This makes it possible to access multiple worksheets easily in an EasyLanguage loop.

The number of an Excel worksheet depends on the location of its associated tab in the workbook. When a workbook is open, the worksheets it contains appear as tabs, beginning in the lower left-hand corner of the active worksheet. The worksheet the name of which appears on the leftmost tab is worksheet number 1. The next tab to the right is the tab of worksheet 2, etc.
The number of a worksheet has nothing to do with its name. A worksheet may be named “Sheet1”. However, that worksheet is worksheet number 1, for the purposes of the ELXL_WithSheetNum function, only if its tab is in the leftmost position in the workbook. Because worksheets can be renamed and reordered, it is tab position that is important, not a worksheet’s name. Similarly, a worksheet named “Sheet2” may actually be worksheet number 5, if its tab is located fifth from the left in the workbook. Tab position determines worksheet numbering – worksheet names are irrelevant.

ELXL_SetCellBool

variables: bool SetRtn(false) ;

SetRtn = ELXL_SetCellBool(“G9”, Volume > 130000000) ;

This function places a Boolean value into an Excel cell.

The sample code places TRUE or FALSE into Excel cell G9, depending upon whether Volume > 130000000 on the bar on which the function is called.
The value placed into the Excel cell by this function is of Boolean data type. The value is not a string – not the string “TRUE” or the string “FALSE”, though the word TRUE or the word FALSE appears in the cell. No conversion between EasyLanguage Boolean values and strings is made. Instead, the value placed in the Excel cell is an actual Boolean value.

ELXL_SetCellBoolRC

variables: bool SetRtn(false) ;

SetRtn = ELXL_SetCellBoolRC(9, 7, Volume > 130000000) ;

This function serves the same purpose as the function ELXL_SetCellBool. However, it addresses cells using row numbers and column numbers, rather than row numbers and column letters.
The sample code places TRUE or FALSE into Excel cell G9 (column 7 is column G), depending upon whether Volume > 130000000 on the bar on which the function is called.

The value placed into the Excel cell by this function is of Boolean data type. The value is not a string – as in the strings “TRUE” and “FALSE”. No conversion between EasyLanguage Boolean values and strings is made. Instead, the value placed in the Excel cell is an actual Boolean value.

ELXL_SetCellNumber

variables: bool SetRtn(false) ;

SetRtn = ELXL_SetCellNumber(“H10”, Close) ;

This function places a numeric value into an Excel cell.

The sample code places the value of the current bar’s closing price into Excel cell H10.

The values placed into the Excel cell by this function is of double-precision floating point data type.

ELXL_SetCellNumberRC

variables: bool SetRtn(false) ;

SetRtn = ELXL_SetCellNumberRC(10, 8, Close) ;

This function serves the same purpose as the function ELXL_SetCellNumber. However, it addresses cells using row numbers and column numbers, rather than row numbers and column letters.

The sample code places the value of the current bar’s closing price into Excel cell H10 (column 8 is column H).

The value placed into the Excel cell by this function is of double-precision floating point data type.

ELXL_SetCellString

variables: bool SetRtn(false) ;

SetRtn = ELXL_SetCellString(“B3”, “Closing Price”) ;

This function places a string value into an Excel cell.

The sample code places the string “Closing Price” into Excel cell B3.

The value placed into the Excel cell by this function is of string data type.

ELXL_SetCellStringRC

variables: bool SetRtn(false) ;

SetRtn = ELXL_SetCellStringRC(3, 2, “Closing Price”) ;

This function serves the same purpose as the function ELXL_SetCellString. However, it addresses cells using row numbers and column numbers, rather than row numbers and column letters.

The sample code places the string “Closing Price” into Excel cell B3 (column B is column 2).

The value placed into the Excel cell by this function is of string data type.

ELXL_GetCellBool

variables:
bool GetRtn(false),

bool oBoolValue(false) ;

GetRtn = ELXL_GetCellBool(“C33”, oBoolValue) ;

This function retrieves a Boolean value from an Excel cell and assigns that value to an EasyLanguage variable.

The sample code retrieves the value TRUE or FALSE from Excel cell C33 and places that value into the EasyLanguage variable oBoolValue.

ELXL_GetCellBoolRC

variables:

bool GetRtn(false),

bool oBoolValue(false) ;

GetRtn = ELXL_GetCellBoolRC(33, 3, oBoolValue) ;

This function serves the same purpose as the function ELXL_GetCellBool. However, it addresses cells using row numbers and column numbers, rather than row numbers and column letters.

The sample code retrieves the value TRUE or FALSE from Excel cell C33 and places that value into the EasyLanguage variable oBoolValue. (Column C is column 3.)

ELXL_GetCellNumber

variables:

bool GetRtn(false),

double oNumValue(0) ;

GetRtn = ELXL_GetCellNumber(“D3”, oNumValue) ;

This function retrieves a numeric value from an Excel cell and assigns that value to an EasyLanguage variable.

The sample code retrieves the numeric value in Excel cell D3 and places that value into the EasyLanguage variable oNumValue. The variable into which the return value is stored should be declared as a double-precision float.

ELXL_GetCellNumberRC

variables:

bool GetRtn(false),

double oNumValue(0) ;

GetRtn = ELXL_GetCellNumber(3, 4, oNumValue) ;

This function serves the same purpose as the function ELXL_GetCellNumber. However, it addresses cells using row numbers and column numbers, rather than row numbers and column letters.

The sample code retrieves the numeric value in Excel cell D3 (column D is column 4) and places that value into the EasyLanguage variable oNumValue. The variable into which the return value is stored should be declared as a double-precision float.

ELXL_GetCellString

variables:

bool GetRtn(false),

string oStringVal(“”) ;

GetRtn = ELXL_GetCellString(“J28”, oStringVal) ;

This function retrieves a string value from an Excel cell and assigns that value to an EasyLanguage variable.

The sample code retrieves the string value in Excel cell J28 and places that value into the EasyLanguage variable oStringVal. The variable into which the return value is stored should be declared as a string.

ELXL_GetCellStringRC

variables:

bool GetRtn(false),

string oStringVal(“”) ;

GetRtn = ELXL_GetCellStringRC(28, 10, oStringVal) ;

This function serves the same purpose as the function ELXL_GetCellString. However, it addresses cells using row numbers and column numbers, rather than row numbers and column letters.
The sample code retrieves the string value in Excel cell J28 (column J is column 10) and places that value into the EasyLanguage variable oStringVal. The variable into which the return value is stored should be declared as a string.

ELXL_SetCellBGClr

variables: bool SetRtn(false) ;
SetRtn = ELXL_SetCellBGClr("A5", DarkGray) ;
SetRtn = ELXL_SetCellBGClr(“B5”, RGB(0, 0, 0)) ;
{ RGB(0, 0, 0) is black }

This function sets the background color of an Excel cell to a 32-bit color.

EasyLanguage reserved words that specify colors may be used, as long as the LegacyColorValue attribute is not set to TRUE. (If the code [LegacyColorValue = true] appears in the analysis technique, then the EasyLanguage reserved words associated with colors return 16-bit color values.)

Custom colors can be generated by combining red, green, and blue values using the RGB() function. For more on this function, please consult the TradeStation User Guide.
The sample code sets the background color of cell A5 to dark gray. It then sets the background color of cell B5 to black.

ELXL_SetCellBGClrRC

variables: bool SetRtn(false) ;

SetRtn = ELXL_SetCellBGClrRC(5, 1, DarkGray) ;
SetRtn = ELXL_SetCellBGClrRC(5, 2, RGB(0, 0, 0)) ;
{ RGB(0, 0, 0) is black }

This function serves the same purpose as the function ELXL_SetCellBGClr. However, it addresses cells using row numbers and column numbers, rather than row numbers and column letters. See the notes on 32-bit colors in the above description of the function ELXL_SetCellBGClr.

The sample code sets the background color of cell A5 to dark gray. It then sets the background color of cell B5 to black.

ELXL_SetCellFntClr

variables: bool SetRtn(false) ;

SetRtn = ELXL_SetCellFntClr("A5", Blue) ;
SetRtn = ELXL_SetCellFntClr(“B5”, RGB(0, 0, 0)) ;
{ RGB(0, 0, 0) is black }

This function sets the color of the font used in an Excel cell to a 32-bit color. See the notes on 32-bit colors in the above description of the function ELXL_SetCellBGClr.

The sample code sets the font color used in cell A5 to blue. It then sets the font color used in cell B5 to black.

ELXL_SetCellFntClrRC

variables: bool SetRtn(false) ;

SetRtn = ELXL_SetCellFntClrRC(5, 1, Blue) ;
SetRtn = ELXL_SetCellFntClr(5, 2, RGB(0, 0, 0)) ;
{ RGB(0, 0, 0) is black }

This function serves the same purpose as the funtion ELXL_SetCellFntClr. However, it addresses cells using row numbers and column numbers, rather than row numbers and column letters. See the notes on 32-bit colors in the above description of the function ELXL_SetCellBGClr.

The sample code sets the font color used in cell A5 to blue. It then sets the font color used in cell B5 to black.

ELXL_ClearCell

variables: bool ClearRtn(false) ;

ClearRtn = ELXL_ClearCell(“A1”) ;

This function clears the contents, but not the formatting, of a specified cell.

The sample code clears the contents of cell A1. If you wish to clear the contents of a set of merged cells, you can specify the upper left-hand and lower right-hand corners of the range to be cleared. For example, it cells C7 and C8 have been merged, they can be cleared using code like the following:
variables: bool ClearRtn(false) ;

ClearRtn = ELXL_ClearCell(“C7:C8”) ;

ELXL_ClearCellRC

variables: bool ClearRtn(false) ;

ClearRtn = ELXL_ClearCellRC(2, 3) ;

This function serves the same purpose as the function ELXL_ClearCell. However, it addresses cells using row numbers and column numbers, rather than row numbers and column letters.

The sample code clears the contents of cell C2.

ELXL_ClearCellFmt

variables: bool ClearRtn(false) ;

ClearRtn = ELXL_ClearCellFmt(“A1”) ;

This function clears the formatting, but not the contents, of a specified cell.

The sample code clears the contents of cell A1. If you wish to clear the format of a set of merged cells, you can specify the upper left-hand and lower right-hand corners of the range to be cleared. For example, it cells C7 and C8 have been merged, their format can be cleared using code like the following:

variables: bool ClearRtn(false) ;

ClearRtn = ELXL_ClearCellFmt(“C7:C8”) ;

ELXL_ClearCellFmtRC

variables: bool ClearRtn(false) ;

ClearRtn = ELXL_ClearCellFmtRC(2, 3) ;

This function serves the same purpose as the function ELXL_ClearCellFmt. However, it addresses cells using row numbers and column numbers, rather than row numbers and column letters.

The sample code clears the formatting of cell C2.

ELXL_ClearSheet

variables:

bool WorksheetReady(false),

bool ClearRtn(false) ;

WorksheetReady = ELXL_WithSheet(“Data.xls”, “Sheet2”) ;
ClearRtn = ELXL_ClearSheet ;

This function clears the contents, but not the formatting, of an entire Excel worksheet. The worksheet to which this function applies is that specified in the most recent call to the function ELXL_WithSheet.

The sample code clears the contents of the worksheet “Sheet2” in workbook “Data.xls”.

ELXL_ClearSheetFmt

variables:

bool WorksheetReady(false),

bool ClearRtn(false) ;

WorksheetReady = ELXL_WithSheet(“Data.xls”, “Sheet2”) ;
ClearRtn = ELXL_ClearSheetFmt ;

This function clears the formatting, but not the contents, of an entire Excel worksheet. The worksheet to which this function applies is that specified in the most recent call to the function ELXL_WithSheet.

The sample code clears the formatting of the worksheet “Sheet2” in workbook “Data.xls”.
Demonstration Code and Workspaces
Contents of the Download Package
The ELExcel.dll download package consists of two zip files:

ELExcel – Development Files.zip: This file contains the Visual C++ source code and project files from which ELExcel.dll is compiled. These files are not required to run the Excel demonstration code or workspaces. They are provided as demonstration code for developers who wish to create their own TradeStation-compatible DLL’s.
ELExcel – Demo Files.zip: This file contains the compiled ELExcel.dll file, demonstration EasyLanguage code, demonstration TradeStation workspaces, demonstration Excel files, and documentation.

Extracting the Zip File Contents

 ELExcel – Development Files.zip

If desired, the contents of ELExcel – Development Files.zip may be extracted to the subdirectory of your choice. The DLL project may then be opened in Visual Studio 2005 or later by double-clicking the file ELExcel.sln, in the normal manner.

 ELExcel – Demo Files.zip

The following steps describe the procedure for extracting the contents of the file ELExcel – Demo Files.zip. It is required that you follow this process in order for the demonstrations to work properly.
1.) Extract the file ELExcel.dll from the zip file and place it into your installation’s equivalent to this subdirectory:

C:\WINDOWS\system32\

2.) Extract the TradeStation workspaces ELXL Demo Workspace 1.tsw and ELXL Demo Workspace 2.tsw to your installation’s equivalent to the following subdirectory:

C:\Program Files\TradeStation X.Y (Build ABCD)\MyWork\

3.) Extract the file ELExcel.ELD to any location on your computer where you would like to put it. Make a note of where you put this file.

4.) Start TradeStation if it is not already running. Using Windows Explorer, locate the file ELExcel.ELD that you just saved. Double-click it to begin the process of importing the wrapper functions and analysis techniques that are used in the demo workspaces into your TradeStation platform. Follow the steps in the Import Wizard dialog boxes, as they appear.

5.) Extract the Excel files, Demo Workbook 1.xls and Demo Workbook 2.xls, to a subdirectory of your choosing. Note where you store these files, as they will be needed to run the demonstrations.

Installing and Running the Demonstrations
 Running ELXL Demo Workspace 1

ELXL Demo Workspace 1.tsw demonstrates how values can be written from EasyLanguage into an Excel spreadsheet. In the demo, historical price and volume-related values are written from a chart to an Excel spreadsheet, creating a spreadsheet that holds bar-by-bar data. In this demonstration, values are not written to Excel in “real-time”. That functionality will be illustrated in ELXL Demo Workspace 2.

It is presumed that the above steps for extracting the files from ELExcel – Demo Files.zip have already been successfully completed.

Follow these steps to run Demo 1:
1.) If you have any Excel files open, close them now and close all running instances of Excel.
2.) Start Excel and open the Excel workbook “Demo Workbook 1.xls”, that you extracted from the zip file in Step 5, above. Note that there is no data on “Sheet1” of the Excel workbook. See Figure 1, below.

[image: image1.png]
Figure 1 - Demo Workbook 1.xls - Before EasyLaguage Indicator Is Inserted into Chart

3.) Start TradeStation if it is not already running. Open the workspace “ELXL Demo Workspace 1.tsw”.
4.) The indicator “Excel Link – Demo 1” has already been inserted into the chart for you. However, its status is set to “Off”. Format the indicator by following the Format -> Analysis Techniques menu sequence. Set the status of the indicator to “On”, and click the “Close” button on the Format Analysis Techniques dialog box. Data from the chart will be written to “Sheet1” of the Excel workbook. After the indicator has run, Sheet1 will appear as shown in Figure 2, below.

[image: image2.png]
Figure 2 - Demo Workbook 1.xls - After EasyLanguage Indicator is Inserted into Chart and Run

The overall architecture of this demonstration is briefly described below. The indicator code is also briefly described. The functions used by the indicator have been previously described in detail.

The TradeStation workspace used for this demonstration contains a chart, along with code for an indicator. The indicator calls ELExcel.dll functions that place string (text) and numeric values into cells in an Excel worksheet.
When the indicator is inserted into the chart, on CurrentBar = 1, the code calls the function ELXL_Initialize. This function must be called to begin the process of communicating with Excel. The function ELXL_WithSheet is then called, to tell Excel that all subsequent operations are to be performed on the worksheet specified in the function call (Sheet1). A number of calls are then made to ELXL_SetCellString in order to place string values into various cells of the worksheet. These cells act as column headings for the data that will be subsequently placed in the worksheet. Finally, on bar 1, calls are made to set the background and font colors of the column-heading cells.

In order to demonstrate that cells can be addressed in two different ways, the function calls that set the background and font colors are made using these two different addressing methods. Some of the cell background and font colors are set using the functions ELXL_SetCellBGClr and ELXL_SetCellFntClr. These functions address the cells using row numbers and column letters, “A1”, “B1”, “C1”, etc. The rest of the cell background and font colors are set using the functions ELXL_SetCellBGClrRC and ELXL_SetCellFntClrRC. These functions address cells using row numbers and column numbers, with column A being column 1, column B being column 2, etc.
After the column headers have been written to the spreadsheet, the symbol, bar date, bar time, and opening, high, low, and closing prices of the bar are written to the appropriate columns of the worksheet. This process occurs on every bar. A Boolean value is written, too. Its value is true if the volume of the bar exceeds 130 million. It is false otherwise.

A counter (RowNum) is used in the EasyLanguage code to determine the Excel row into which to place each bar’s data. As each new bar is processed, the counter is incremented so that each bar’s data goes into a new row in the spreadsheet.

The function calls that place data in each row use the row number and column number method of addressing cells. Of course, the row number and column letter method could have been used instead.

This completes our description of Demo Workspace 1.

 Running ELXL Demo Workspace 2

It is presumed that the above steps for extracting the files from ELExcel – Demo Files.zip have already been successfully completed.

ELXL Demo Workspace 2.tsw demonstrates how values can be passed from RadarScreen to Charting in “real-time” using an Excel spreadsheet. It also demonstrates how values calculated in Excel can be retrieved and plotted in a chart. This demo workspace is intended for operation during regular market hours, when live market data is flowing.

The demo contains a RadarScreen window that has, inserted into it, all of the S&P 500 stocks for which one year or more of historical price information is available (about 494 stocks). The indicator “Custom 1 Line” has already been inserted into the chart. The purpose of the “Custom 1 Line” indicator is only to retrieve data for use by an indicator that will be inserted later.

The indicator that will be inserted will calculate the N-day high and low of each stock, as of yesterday’s close. Additionally, the indicator will determine whether the stock is currently trading at a new N-day high or low. N is a user-input value, called NumDaysHiLo. Its value is 200 by default so, by default, approximately 52-week highs and lows will be determined. This indicator will write the information regarding which stocks are at new N-day highs and lows to an Excel spreadsheet. The indicator will write a 1 (one) to Excel if the stock is at a new high, -1 if the stock is at a new low, and 0 if the stock is currently trading somewhere between its N-day high and low. All high or low comparisons compare the current price of the stock to the N-day high and low calculated as of yesterday’s close.
The Excel file, which has been pre-formatted, calculates, based on the information it receives from the RadarScreen, the percentage of the stocks that are trading at a new N-day high and low, and takes the difference between these two numbers – the percentage of stocks trading at a new high minus the percentage trading at a new low. In “real-time” as stocks trade above and below their N-day highs and lows, the percentage is automatically updated. The indicator sends new information from the RadarScreen to Excel, and calculations in Excel automatically tally the results.
A second indicator is inserted into the chart in the demo workspace. When the status of this indicator is set to “On”, the indicator retrieves from Excel the percentage described above (percentage of stocks at new highs minus percentage at new lows). This value is plotted in Open-High-Low-Close bar format on the chart. Again, this plotting will occur in “real-time” only – when live market data is flowing – and not on historical bars.
Follow these steps to run Demo 2:
1.) If you have any Excel files open, close them now and close all running instances of Excel.
2.) Start Excel and open the Excel workbook “Demo Workbook 2.xls”. Note that there are already some column headings and other information in the worksheet.

3.) Start TradeStation if it is not already running. Open the workspace “ELXL Demo Workspace 2.tsw”.
4.) Allow a few minutes for the indicator “Custom 1 Line” to plot a value for each stock. This may take a few minutes, as data is being retrieved for each stock. Should any of the symbols not show a value under the “Custom 1 Line” column after, say, 3 minutes, click on the sybols and press the <Ctrl-R> menu sequence to refresh the data for that symbol.
5.) Once there is a value shown in the column “Custom 1 Line” for each stock, delete the indicator “Custom 1 Line” from the RadarScreen. It’s purpose has been served – it has downloaded data for all of the stocks that will be used later.
6.) Insert the indicator “Excel Link – Demo 2” into the RadarScreen. It may take a while for the indicator to run the first time that it is applied because information regarding whether each symbol is at a new high or low is being written to the Excel spreadsheet. You can watch the Excel spreadsheet as values gradually load into it and into the RadarScreen. However, don’t try to interact extensively with the Excel spreadsheet when the values are first loading. Also, do not sort the RadarScreen once the indicator has been inserted, as this will cause the total calculation to be incorrect for at least a while.
7.) If desired, at this point, you may adjust the value of the input NumDaysHiLo of the indicator that you’ve inserted into the RadarScreen. The lower this value is set, the more stocks will generally be trading at a new high or low. If the value is adjusted, allow a minute or so for the indicator to recalculate and update the Excel spreadsheet.

8.) After the number of stocks hitting new highs and lows has settled in the Excel file (changes to these values will become less frequent), insert the indicator “Excel Link – Demo 2CB” into the chart. You may have to let a couple “real-time” bars go by before you start seeing the indicator values plotted. The indicator retrieves, from the Excel file, for “real-time” bars, the percentage of stocks trading at a new N-day high minus the percentage trading at a new N-day low. It plots the value retrieved, in OHLC bar format. Do not be surprised if any, or even all, of the percentages are 0 (zero), especially if the value of NumDaysHiLo is large – say, greater than 30. In testing it commonly occurred that, of the 494 stocks in the RadarScreen, none were at a new 200-day high or low. See Step 7, above.

[image: image3.png]
Figure 3 - Indicator "Excel Link - Demo 2CB" Plots as OHLC Bars Below Price
Support
Should you have questions about the ELExcel.dll example, another TradeStation-compatible DLL, or about development of your own TradeStation-compatible DLL’s, please post your questions in the “EasyLanguage” category, “EasyLanguage-DLL” subcategory, in TradeStation’s online support forums, here:

https://www.tradestation.com/discussions/Forum.aspx?Forum_ID=213&SelCategory=1853&subCategory=EasyLanguage-DLL
There is a short registration process required in order to access the online support forums. After you’ve registered and logged in, simply click on the link (button) that says “New Topic” to go to the form on which you can enter your question. When completing the new topic form, be sure to select “EasyLanguage” as the category for your question and “EasyLanguage-DLL” as the subcategory.

