
PowerLanguage
Keyword
Reference

Keyword	Alphabetical	Index

A-DE-NO-ST-Z

#BeginCmtry
#Events
#Return
A
Abort
Above
AbsValue
Ago
Alert
AlertEnabled
All
AllowSendOrdersAlways
An
And
ArcTangent
Array
Array_Compare
Array_Contains
Array_Copy
Array_GetBooleanValue
Array_GetFloatValue
Array_GetIntegerValue
Array_GetMaxIndex
Array_GetStringValue
Array_GetType
Array_IndexOf
Array_SetBooleanValue
Array_SetFloatValue
Array_SetIntegerValue

2

Array_SetMaxIndex
Array_SetStringValue
Array_SetValRange
Array_Sort
Array_Sum
Arrays
ArraySize
ArrayStartAddr
Arw_Anchor_to_Bars
Arw_Delete
Arw_Get_Anchor_to_Bars
Arw_GetActive
Arw_GetBarNumber
Arw_GetColor
Arw_GetDate
Arw_GetDirection
Arw_GetFirst
Arw_GetLock
Arw_GetNext
Arw_GetSize
Arw_GetStyle
Arw_GetText
Arw_GetTextAttribute
Arw_GetTextBGColor
Arw_GetTextColor
Arw_GetTextFontName
Arw_GetTextSize
Arw_GetTime
Arw_GetTime_DT
Arw_GetTime_s
Arw_GetVal
Arw_Lock
Arw_New
Arw_New_BN
Arw_New_DT

3

Arw_New_s
Arw_New_self
ARW_New_Self_BN
Arw_New_Self_DT
Arw_New_self_s
Arw_SetBarNumber
Arw_SetColor
Arw_SetLocation
Arw_SetLocation_BN
Arw_SetLocation_DT
Arw_SetLocation_s
Arw_SetSize
Arw_SetStyle
Arw_SetText
Arw_SetTextAttribute
Arw_SetTextBGColor
Arw_SetTextColor
Arw_SetTextFontName
Arw_SetTextSize
AskSize
At
AtCommentaryBar
AUD
AutoSession
AvgBarsEvenTrade
AvgBarsLosTrade
AvgBarsWinTrade
AvgEntryPrice
AvgEntryPrice_at_Broker
AvgEntryPrice_at_Broker_for_The_Strategy
AvgList
Bar
BarInterval
Bars

4

BarsSinceEntry
BarsSinceEntry_Checked
BarsSinceExit
BarsSinceExit_Checked
BarStatus
BarType
BarType_ex
Based
BaseDataNumber
Begin
Below
BidSize
BigPointValue
Black
Blue
Bool
BoxSize
Break
Buy
BuyToCover
By
Byte
C
CAD
Call
Cancel	Alert
case
Category
Ceiling
ChangeMarketPosition
Char
CheckAlert
CheckCommentary
CHF
ClearDebug

5

ClearPrintLog

Close
CommandLine
Commentary
CommentaryCL
CommentaryEnabled
Commission
ComputerDateTime
Contract
ContractProfit
Contracts
Convert_Currency
Cosine
Cotangent
Cover
Cross
Crosses
CurrentBar
CurrentContracts
CurrentDataNumber
CurrentDate
CurrentEntries
CurrentOpenInt
CurrentShares
CurrentTime
CurrentTime_s
Cyan
D
DailyClose
DailyHigh
DailyLimit
DailyLow
DailyOpen
DailyVolume

6

DarkBlue
DarkBrown

DarkCyan
DarkGray
DarkGreen
DarkMagenta
DarkRed
DarkYellow
Data
DataCompression
Date
DateTime
Datetime_bar_update
DateTime2ELTime
DateTime2ELTime_s
DateTimeToString
DateTimeToString_Ms
DateToJulian
DateToString
Day
DayFromDateTime
DayOfMonth
DayOfWeek
DayOfWeekFromDateTime
Days
Default
DefineDLLFunc
Description
Does
DOM_AskPrice
DOM_AsksCount
DOM_AskSize
DOM_BidPrice
DOM_BidsCount

7

DOM_BidSize
DOM_IsConnected
Double

DoubleQuote
DownTicks
DownTo
DWORD

8

Keyword	Alphabetical	Index

A-DE-NO-ST-Z

El_DateStr
El_DateToDateTime
EL_TimeToDateTime
EL_TimeToDateTime_s
ELDateToDateTime
Else
ELTimeToDateTime
ELTimeToDateTime_s
EncodeDate
EncodeTime
End
Entry
EntryDate
EntryDate_Checked
EntryDateTime
EntryDateTime_Checked
EntryName
EntryPrice
EntryPrice_Checked
EntryTime
EntryTime_Checked
EUR
ExchListed
ExecOffset
ExitDate
ExitDate_Checked
ExitDateTime
ExitDateTime_Checked
ExitName

9

ExitPrice
ExitPrice_Checked
ExitTime
ExitTime_Checked
ExpirationDate
ExpirationDateFromVendor
ExpValue
External
False
File
FileAppend
FileDelete
Fill_Array
Float
Floor
For
FormatDate
FormatTime
fpcExactAccuracy
fpcHighAccuracy
fpcLowAccuracy
fpcMedAccuracy
fpcVeryHighAccuracy
fpcVeryLowAccuracy
FracPortion
Friday
From
GBP
GetAccount
GetAccountID
GetAppInfo
GetBackgroundColor
GetBValue
GetCDRomDrive
GetCountry

10

GetCurrency
GetExchangeName
GetGValue
GetNumAccounts
GetNumPositions
GetPlotBGColor
GetPlotColor
GetPlotWidth
GetPositionAveragePrice
GetPositionOpenPL
GetPositionQuantity
GetPositionSymbol
GetPositionTotalCost
GetRTAccountEquity
GetRTAccountNetWorth
GetRTSymbolName
GetRTUnrealizedPL
GetRValue
GetStrategyName
GetSymbolName
GetUserID
GetUserName
GradientColor
Green
GrossLoss
GrossProfit
H
High
Higher
HKD
HoursFromDateTime
I
i_AvgEntryPrice
i_AvgEntryPrice_at_Broker

11

i_AvgEntryPrice_at_Broker_for_The_Strategy
i_ClosedEquity
i_CurrentContracts
i_CurrentShares
I_getplotvalue
i_MarketPosition
i_MarketPosition_at_Broker
i_MarketPosition_at_Broker_for_The_Strategy
i_OpenEquity
I_setplotvalue
iEasyLanguageObject
If
IncMonth
InitialCapital
Input
Inputs
InsideAsk
InsideBid
InStr
Int
Int64
IntervalType
IntervalType_ex
IntPortion
IntraBarOrderGeneration
IntraBarPersist
Is
JPY
JulianToDate
L
LargestLosTrade
LargestWinTrade
Last
LastCalcDateTime
LastCalcJDate

12

LastCalcMMTime

LastCalcmSTime
LastCalcSSTime
LeftStr
LegacyColorToRGB
LegacyColorValue
LightGray
Limit
Log
Long
Low
Lower
LowerStr
LPBool
LPByte
LPDouble
LPDWORD
LPFloat
LPInt
LPLong
LPSTR
LPWORD
Magenta
Margin
Market
MarketPosition
MarketPosition_at_Broker
MarketPosition_at_Broker_for_The_Strategy
MarketPosition_Checked
MaxBarsBack
MaxBarsForward
MaxConsecLosers
MaxConsecWinners
MaxContractProfit

13

MaxContractProfit_Checked
MaxContracts

MaxContracts_Checked
MaxContractsHeld
MaxEntries
MaxEntries_Checked
MaxIDDrawDown
MaxList
MaxList2
MaxPositionLoss
MaxPositionLoss_Checked
MaxPositionProfit
MaxPositionProfit_Checked
MaxPositionsAgo
MaxShares
MaxShares_Checked
MaxSharesHeld
MC_Arw_GetActive
MC_Text_GetActive
MC_TL_GetActive
MC_TL_New
MC_TL_New_BN
MC_TL_New_DT
MC_TL_New_Self
MC_TL_New_Self_BN
MC_TL_New_Self_DT
MessageLog
Method
MidStr
MillisecondsFromDateTime
MinList
MinList2
MinMove
MinutesFromDateTime

14

Mod
Monday
Month

MonthFromDateTime
MouseClickBarNumber
MouseClickCtrlPressed
MouseClickDataNumber
MouseClickDateTime
MouseClickPrice
MouseClickShiftPressed
Neg
NetProfit
NewLine
Next
NOK
None
NoPlot
Not
NthMaxList
NthMinList
Numeric
NumericArray
NumericArrayRef
NumericRef
NumericSeries
NumericSimple
NumEvenTrades
NumLosTrades
NumToStr
NumWinTrades
NZD

15

Keyword	Alphabetical	Index

A-DE-NO-ST-Z

O
Of
On
OnCreate
OnDestroy
Open
OpenEntriesCount
OpenEntryComission
OpenEntryContracts
OpenEntryDate
OpenEntryMaxProfit
OpenEntryMaxProfitPerContract
OpenEntryMinProfit
OpenEntryMinProfitPerContract
OpenEntryPrice
OpenEntryProfit
OpenEntryProfitPerContract
OpenEntryTime
OpenInt
OpenPositionProfit
OptionType
Or
Over
PercentProfit
Place
PlaceMarketOrder
PlaySound
Plot
PlotPaintBar

16

PlotPB
pmm_get_global_named_num
pmm_get_global_named_str
pmm_get_my_named_num
pmm_get_my_named_str
pmm_set_global_named_num
pmm_set_global_named_str
pmm_set_my_named_num
pmm_set_my_named_str
pmm_set_my_status
pmms_get_strategy_named_num
pmms_get_strategy_named_str
pmms_set_strategy_named_num
pmms_set_strategy_named_str
pmms_strategies_allow_entries_all
pmms_strategies_count
pmms_strategies_deny_entries_all
pmms_strategies_get_by_symbol_name
pmms_strategies_in_long_count
pmms_strategies_in_positions_count
pmms_strategies_in_short_count
pmms_strategies_pause_all
pmms_strategies_resume_all
pmms_strategies_set_status_for_all
pmms_strategy_allow_entries
pmms_strategy_allow_exit_from_long
pmms_strategy_allow_exit_from_short
pmms_strategy_allow_exits
pmms_strategy_allow_long_entries
pmms_strategy_allow_short_entries
pmms_strategy_close_position
pmms_strategy_currentcontracts
pmms_strategy_deny_entries
pmms_strategy_deny_exit_from_long
pmms_strategy_deny_exit_from_short

17

pmms_strategy_deny_exits
pmms_strategy_deny_long_entries
pmms_strategy_deny_short_entries
pmms_strategy_entryprice
pmms_strategy_get_entry_contracts
pmms_strategy_is_paused
pmms_strategy_marketposition
pmms_strategy_maxiddrawdown
pmms_strategy_netprofit
pmms_strategy_openprofit
pmms_strategy_pause
pmms_strategy_resume
pmms_strategy_riskcapital
pmms_strategy_set_entry_contracts
pmms_strategy_set_status
pmms_strategy_symbol
Point
Points
PointValue
Portfolio_CalcMaxPotentialLossForEntry
Portfolio_CurrencyCode
Portfolio_CurrentEntries
Portfolio_GetMarginPerContract
Portfolio_GetMaxPotentialLossPerContract
Portfolio_GrossLoss
Portfolio_GrossProfit
Portfolio_InvestedCapital
Portfolio_MaxIDDrawdown
Portfolio_MaxOpenPositionPotentialLoss
Portfolio_MaxRiskEquityPerPosPercent
Portfolio_NetProfit
Portfolio_NumLossTrades
Portfolio_NumWinTrades
Portfolio_OpenPositionProfit

18

Portfolio_PercentProfit
Portfolio_SetMaxPotentialLossPerContract
Portfolio_StrategyDrawdown
Portfolio_TotalMaxRiskEquityPercent
Portfolio_TotalTrades
PortfolioEntriesPriority
Pos
PositionProfit
PositionProfit_Checked
PosTradeCommission
PosTradeCount
PosTradeEntryBar
PosTradeEntryCategory
PosTradeEntryDateTime
PosTradeEntryName
PosTradeEntryPrice
PosTradeExitBar
PosTradeExitCategory
PosTradeExitDateTime
PosTradeExitName
PosTradeExitPrice
PosTradeIsLong
PosTradeIsOpen
PosTradeProfit
PosTradeSize
Power
PrevClose
PriceScale
Print
ProcessMouseEvents
Put
q_Ask
q_asksize
q_Bid
q_bidsize

19

q_BigPointValue

q_Date
q_ExchangeListed
q_Last
q_OpenInterest
q_PreviousClose
q_Time
q_Time_Dt
q_Time_s
q_TotalVolume
q_tradevolume
RaiseRunTimeError
Random
RecalcLastBarAfter
RecalcPersist
ReCalculate
Red
RegularSession
RevSize
RGB
RGBToLegacyColor
RightStr
Round
RTSymbol
RTSymbolName
SameExitFromOneEntryOnce
Saturday
ScrollToBar
SecondsFromDateTime
SEK
Self
Sell
SellShort
Sess1EndTime

20

Sess1FirstBarTime
Sess1StartTime

Sess2EndTime
Sess2FirstBarTime
Sess2StartTime
SessionCount
SessionCountMS
SessionEndDay
SessionEndDayMS
SessionEndTime
SessionEndTimeMS
SessionLastBar
SessionStartDay
SessionStartDayMS
SessionStartTime
SessionStartTimeMS
SetBreakEven
SetBreakEven_pt
SetCustomFitnessValue
SetDollarTrailing
SetExitOnClose
SetFPCompareAccuracy
SetMaxBarsBack
SetPercentTrailing
SetPercentTrailing_pt
SetPlotBGColor
SetPlotColor
SetPlotWidth
SetProfitTarget
SetProfitTarget_pt
SetStopContract
SetStopLoss
SetStopLoss_pt
SetStopPosition

21

SetStopShare
SetTrailingStop_pt
SGD

Share
Shares
Short
Sign
Sine
Slippage
Spaces
Square
SquareRoot
Stop
Strike
String
StringArray
StringArrayRef
StringRef
StringSeries
StringSimple
StringToDate
StringToDateTime
StringToDTFormatted
StringToTime
StrLen
StrToNum
SumList
Sunday
switch
Symbol
Symbol_Close
Symbol_CurrentBar
Symbol_Date
Symbol_DownTicks

22

Symbol_High
Symbol_Length
Symbol_Low
Symbol_Open

Symbol_OpenInt
Symbol_TickID
Symbol_Ticks
Symbol_Time
Symbol_Time_S
Symbol_UpTicks
Symbol_Volume
SymbolCurrencyCode
SymbolName

23

Keyword	Alphabetical	Index

A-DE-NO-ST-Z

T
Tangent
Text
Text_Anchor_to_Bars
Text_Delete
Text_Get_Anchor_to_Bars
Text_GetActive
Text_GetAttribute
Text_GetBarNumber
Text_GetBGColor
Text_GetBorder
Text_GetColor
Text_GetDate
Text_GetFirst
Text_GetFontName
Text_GetHStyle
Text_GetLock
Text_GetNext
Text_GetSize
Text_GetString
Text_GetTime
Text_GetTime_DT
Text_GetTime_s
Text_GetValue
Text_GetVStyle
Text_Lock
Text_New
Text_New_BN
Text_New_Dt

24

Text_New_s
Text_New_self
Text_New_Self_BN
Text_New_Self_DT
Text_New_self_s
Text_SetAttribute
Text_SetBarNumber
Text_SetBGColor
Text_SetBorder
Text_SetColor
Text_SetFontName
Text_SetLocation
Text_SetLocation_BN
Text_SetLocation_DT
Text_SetLocation_s
Text_SetSize
Text_SetString
Text_SetStyle
Than
The
Then
This
ThreadSafe
Thursday
TickID
Ticks
Time
Time_s
Time_s2Time
Time2Time_s
TimeToString
TL_Anchor_to_Bars
TL_Delete
TL_Get_Anchor_to_Bars
TL_GetActive

25

TL_GetAlert
TL_GetBegin_BN
TL_GetBegin_Dt
TL_GetBeginDate
TL_GetBeginTime
TL_GetBeginTime_s
TL_GetBeginVal
TL_GetColor
TL_GetEnd_BN
TL_GetEnd_Dt
TL_GetEndDate
TL_GetEndTime
TL_GetEndTime_s
TL_GetEndVal
TL_GetExtLeft
TL_GetExtRight
TL_GetFirst
TL_GetLock
TL_GetNext
TL_GetSize
TL_GetStyle
TL_GetValue
TL_GetValue_BN
TL_GetValue_Dt
TL_GetValue_s
TL_Lock
TL_New
TL_New_BN
TL_New_Dt
TL_New_s
TL_New_self
TL_New_Self_BN
TL_New_Self_Dt
TL_New_Self_s

26

TL_SetAlert
TL_SetBegin
TL_SetBegin_BN
TL_SetBegin_DT
TL_SetBegin_s
TL_SetColor
TL_SetEnd
TL_SetEnd_BN
TL_SetEnd_Dt
TL_SetEnd_s
TL_SetExtLeft
TL_SetExtRight
TL_SetSize
TL_SetStyle
To
Today
Tool_Dashed
Tool_Dashed2
Tool_Dashed3
Tool_Dotted
Tool_Solid
Total
TotalBarsEvenTrades
TotalBarsLosTrades
TotalBarsWinTrades
TotalTrades
TradeDate
TradeTime
TradeVolume
True
TrueFalse
TrueFalseArray
TrueFalseArrayRef
TrueFalseRef
TrueFalseSeries

27

TrueFalseSimple

TRY_
Tuesday
Under
Unsigned
UpperStr
UpTicks
USD
V
Var
Variable
Variables
Vars
VarSize
VarStartAddr
Void
Volume
Was
Wednesday
While
White
WORD
Year
YearFromDateTime
Yellow
Yesterday
ZAR

28

GetAccount

Returns	the	account	number	for	the	account	at	a	specific	location	in	the	list	of
accounts.

If	the	value	returned	by	GetNumAccounts	is	a	non-zero,	then:

for	1	<=	AccountLoc	<=	GetNumAccounts,	the	function	returns	the	account	number.

For	other	sequence	numbers	an	empty	string	("")	is	returned.

Usage

GetAccount(AccountLoc)

Where:	AccountLoc	-	the	sequence	number	of	the	account	in	the	list	of	accounts.

Notes

This	function	can	be	used	along	with	GetNumAccounts,	to	enumerate	available
accounts	returned	by	broker.

Example

The	broker	returned	the	following	list	of	accounts:	"DU12345",	"DU23456",
"DU34567",	"DU45678".

GetAccount(3)	will	return	"DU34567".

GetAccount(5)	will	return	"".

29

GetAccountID

Returns	the	account	number	which	is	used	for	auto	trading	on	the	chart,	where	the
strategy	is	applied.

Usage

GetAccountID()

Example

GetAccountID()	will	return	"DU34567"	if	the	account	number	which	is	used	for
auto	trading	on	the	chart,	where	the	strategy	is	applied,	is	DU12345.

30

GetNumAccounts

Returns	the	number	of	accounts	in	the	list	of	accounts	obtained	from	broker.

If	the	list	is	empty,	an	"N/A"	value,	i.e.	0,	is	returned.

Usage

GetNumAccounts

Example

The	broker	returned	the	following	list	of	accounts:	"DU12345",	"DU23456",
"DU34567",	"DU45678".	GetNumAccounts	will	return	a	value	of	4.

31

GetNumPositions

Returns	the	number	of	positions	in	MultiCharts	Order	and	Position	Tracker	(not	the
actual	amount	at	the	broker).

Usage

GetNumPositions(Account)

Where:	Account	-	account	number	at	broker.

Example

GetNumPositions("DU12345")	will	return	a	value	of	3	if	the	total	number	of	open
positions	in	MultiCharts	Order	and	Position	Tracker	is	3.

32

GetPositionAveragePrice

Returns	average	price	of	the	position.

Usage

GetPositionAveragePrice(Symbol,	Account)

Where:	Symbol	-	the	name	of	the	instrument.	
												Account	-	account	number	at	broker.

Example

Will	return	a	value	of	1.3456	if	the	average	entry	price	for	the	position,	defined	by
specified	account/symbol	pair	is	1.3456.

33

GetPositionOpenPL

Returns	Open	PL	value	in:

Symbol	currency	for	Avanza	(calculated	on	MultiCharts	side)
Account	currency	for	AvaTrade	(calculated	on	the	broker's	side)
Symbol	currency	for	CQG	(calculated	on	the	broker's	side)
Symbol	currency	for	Dukascopy	(calculated	on	MultiCharts	side)
Account	currency	for	FXCM	(calculated	on	the	broker's	side)
Symbol	currency	for	Interactive	Brokers	(calculated	on	MultiCharts	side)
Symbol	currency	for	LMAX	(calculated	on	the	broker's	side)
Symbol	currency	for	MB	Trading	(calculated	on	MultiCharts	side)
Symbol	currency	for	Open	E	Cry	(calculated	on	the	broker's	side)
Symbol	currency	for	Patsystems	(calculated	on	the	broker's	side)
Symbol	currency	for	Trading	Technologies	(calculated	on	MultiCharts	side)
Symbol	currency	for	WeBank	(calculated	on	MultiCharts	side)
Symbol	currency	for	Rithmic	(calculated	on	the	broker's	side)

Usage

GetPositionOpenPL(Symbol,	Account)

Where:	Symbol	-	the	name	of	the	instrument.	
												Account	-	account	number	at	broker.

Example

Will	return	15	if	the	current	value	in	"Open	PL"	column	in	"Order	and	Position
Tracker"	window	for	the	account	is	15	units	of	the	selected	currency.

34

GetPositionQuantity

Returns	the	size	of	the	position,	defined	by	specified	account/symbol	pair.

Usage

GetPositionQuantity(Symbol,	Account)

Where:	Symbol	-	the	name	of	the	instrument.	
												Account	-	account	number	at	broker.

Example

GetPositionQuantity("ESZ1",	"DU12345")	will	return	a	value	of	1000	if	the	size
of	the	position,	defined	by	specified	account/symbol	pair	position	is	¤1000.

35

GetPositionSymbol

Returns	the	symbol	associated	with	the	position	at	a	specific	location
(PositionLoc)	in	the	list	of	positions	for	the	specified	account.

Usage

GetPositionSymbol(Account,	PositionLoc)

Where:	Account	-	account	number	at	broker.	
												1	<=	PositionLoc	<=	GetNumPositions	-	the	sequence	number	
												of	the	position	in	the	position	list	for	the	specified	account.

Example

GetPositionSymbol("DU12345",	3)	will	return	"ESZ1"	if	the	position	with	the
sequence	number	3	in	the	position	list	for	account	DU12345	is	opened	on	ESZ1.

36

GetPositionTotalCost

Calculated	with	the	following	formula:

PTC	(Position	Total	Cost)	=	AEP	(Average	Entry	Price)	x	TMP	(Total	Market
Position).

Usage

GetPositionTotalCost(Symbol,	Account)

Where:	Symbol	-	the	name	of	the	instrument.	
												Account	-	account	number	at	broker.

Example

GetPositionTotalCost("ESZ1",	"DU12345")	will	return	total	position	cost	for
ESZ1	on	account	DU1234.

37

GetRTAccountEquity

Returns	regular	Account	Equity	at	broker.

Usage

GetRTAccountEquity(Account)

Where:	Account	-	account	name	at	broker.

Example

GetRTAccountEquity("DU12345")	will	return	a	value	of	100	000	if	the	Account
Equity	at	broker	for	DU12345	account	is	¤100	000.

38

GetRTAccountNetWorth

Returns	Account	Net	Liquidation	value	at	broker.

Usage

GetRTAccountNetWorth(Account)

Where:	Account	-	account	name	at	broker.

Example

GetRTAccountNetWorth("DU12345")	will	return	a	value	of	100	000	if	the	Account
Net	Liquidity	at	broker	for	DU12345	account	is	100	000	in	base	currency.

39

GetRTUnrealizedPL

Returns	the	Unrealized/Open	P&L;	for	the	specified	account.

Usage

GetRTUnrealizedPL(Account)

Where:	Account	-	account	number	at	broker.

Example

Will	return	a	value	of	5	000	if	Unrealized(Open)	P&L;	for	the	account	at	broker	is
¤5	000.

40

InitialCapital

Returns	a	numerical	value,	indicating	the	amount	of	initial	capital	set	in	the	strategy
properties.

Usage

InitialCapital

Example

InitialCapital	will	return	10000	if	Initial	Capital	amount	was	set	to	10000	in	the
Strategy	Properties.

41

Alert
Triggers	an	alert	window	where	the	necessary	text	can	be	created.	The	text	can	be
dynamic,	static	or	absent.

Usage

Alert

Notes

If	the	text	isn't	set	in	the	alert	then	Source,	Symbol,	Resolution,	Price	is
displayed

Alerts	are	shown	on	the	last	bar	only

Detailed	information	of	alerts'	settings	is	available	in	Formatting	Studies	>
Alerts

Example

This	statement	will	call	an	alert	without	text	message:

Alert;

This	statement	creates	a	dynamic	alert	text	and	displays	the	number	of	the	weekday:

Alert(Text("Day	of	week	is	",	DayOfWeek(Date)));

This	statement	will	show	static	text:

If	Close	>	Close[1]	Then
Alert(Text("Price	turning	up"))	

42

ms-its:MultiCharts.chm::/files/0270_Indicators/22-7002_Alerts.html

AlertEnabled
Returns	True	if	the	alerts	have	been	turned	on	in	Format	Study	>	Alerts.	This
information	can	make	script	execution	more	efficient	by	discarding	redundant
calculations.	This	function	can	also	be	used	to	notify	the	user	that	he	will	not	see	the
alerts	until	the	relevant	option	is	turned	on.

Usage

AlertEnabled

Notes

Alerts	are	only	generated	for	the	last	bar

There	is	a	difference	between	AlertEnabled	and	CheckAlert:	AlertEnabled
returns	True/False	for	all	the	bars	on	the	chart	while	CheckAlert	does	so	for
the	last	bar	only

AlertEnabled	will	return	True	if	alerts	have	been	enabled

Example

The	example	below	shows	how	a	user	can	be	notified	that	he	has	forgotten	to	turn
on	the	alerts:

Variable:	ID(-1);

If	AlertEnabled=False	And	LastBarOnChart_S=True	Then

ID	=	Text_New_S(Date,	Time_S,	Low,	"Alerts	are	disabled.	See	Format
Study	>	Properties	>	Alerts");

43

Cancel	Alert
The	expression	deactivates	alerts.	This	is	necessary	if	a	script	contains	multiple
alert	statements	and	they	need	to	be	turned	off	under	certain	conditions.

Usage

Cancel	Alert

Notes

Alerts	are	only	generated	for	the	last	bar

Example

The	example	shows	how	all	alerts	can	be	turned	off	depending	on	time.	The	alerts
will	not	be	displayed	after	10:00	pm.

If	Close	>	Close[1]	Then
Alert("Price	is	going	up");
If	Volume	>	Volume[1]	Then
Alert("Volume	is	increasing");
If	Volatility(5)	>	Volatility(5)[1]	Then
Alert("Volatility	is	rising");
If	OpenInt	>	OpenInt[1]	Then
Alert("Open	interest	is	growing");
If	Time	>=	2200	Then	Cancel	Alert;

44

CheckAlert
Returns	True	if	the	alerts	have	been	turned	on	in	Formatting	Studies	>	Alerts.

True/False	is	returned	on	the	last	bar	only.

For	the	bars	other	than	the	last	False	is	always	returned.

Usage

CheckAlert

Notes

There	is	a	difference	between	AlertEnabled	and	CheckAlert.	AlertEnabled
checks	the	status	on	all	the	bars	while	CheckAlert	does	so	for	the	last	bar
only.
Alerts	are	only	generated	for	the	last	bar.

Example

The	example	below	shows	how	CheckAlert	can	help	eliminate	redundant
calculations	on	historic	bars	as	well	as	in	cases	when	alerts	are	not	turned	on:

If	CheckAlert	Then	Begin	If	Volume	>=	2	*	Average(Volume,	10)	Then	Alert
("Volume	is	going	up");	
End;

45

ms-its:MultiCharts.chm::/files/0270_Indicators/22-7002_Alerts.html

Arw_Anchor_to_Bars

Anchors	the	corresponding	arrow	drawing	to	the	visible	bar	index;	returns	a	value
of	0	if	the	operation	was	performed	successfully,	and	a	value	of	-2	if	the	specified
trendline	ID	number	is	invalid.

Usage

Arw_Anchor_to_Bars(ArrowID,LogicalExpression)

Where:	ArrowID	is	a	numerical	expression	specifying	the	arrow	drawing	ID
number	
													LogicalExpression	is	a	logical	value;	True	=	add	option	and	False	=
remove	option

Notes

Arrow	ID	number	is	returned	by	Arw_New	when	the	arrow	drawing	is	created.

Example	

Anchor	the	arrow	drawing	with	an	ID	number	of	5	to	the	visible	bar	index:

Value1=Arw_Anchor_to_Bars(5,	true);

46

Arw_Delete

Removes	an	arrow	object	with	the	specified	ID	number	from	a	chart;	returns	a
value	of	0	if	the	object	was	successfully	removed,	and	a	value	of	-2	if	the	specified
object	ID	number	is	invalid.

Usage

Arw_Delete(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Remove	the	arrow	object	with	an	ID	number	of	3:

Value1=Arw_Delete(3);

47

Arw_GetActive

Returns	a	numerical	value	indicating	the	object	ID	number	of	the	currently	selected
arrow	object;	returns	a	value	of	-1	if	no	arrow	objects	are	currently	selected.

Usage

Arw_GetActive

Notes

An	object-specific	ID	number	is	assigned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	a	value,	indicating	the	object	ID	number	of	the	currently	selected	arrow
object,	to	Value1	variable:

Value1=Arw_GetActive;

48

Arw_GetBarNumber

Returns	a	numerical	value	representing	the	barnumber	of	the	arrow	object	with	a
specified	ID;	returns	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_GetBarNumber(ref)

Parameters:

ref	-	ID	of	the	arrow	object

Example

Get	the	number	of	the	bar	where	the	arrow	object	with	ID	=	1	is	placed:

Arw_GetBarNumber(1);

49

Arw_GetColor

Returns	an	RGB	color	number	or	a	legacy	color	value	that	correspond	to	the	color
of	the	arrow	contained	in	an	arrow	object	with	the	specified	ID	number;	returns	a
value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_GetColor(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	an	RGB	color	number,	corresponding	to	the	color	of	the	arrow	contained
in	an	arrow	object	with	the	ID	number	of	3,	to	Value1	variable:

Value1=Arw_GetColor(3);

Assign	a	legacy	color	value,	corresponding	to	the	color	of	the	arrow	contained	in
an	arrow	object	with	the	ID	number	of	3,	to	Value1	variable:

[LegacyColorValue=True];
Value1=Arw_GetColor(3);

50

Arw_GetDate

Returns	a	numerical	value,	indicating	the	date	of	the	bar	at	which	an	arrow	object
with	the	specified	ID	number	has	been	placed;	returns	a	value	of	-2	if	the	specified
object	ID	number	is	invalid.

The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

Arw_GetDate(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	a	value,	indicating	the	date	of	the	bar	at	which	an	arrow	object	with	the	ID
number	of	3	has	been	placed,	to	Value1	variable:

Value1=Arw_GetDate(3);

51

Arw_GetDirection

Returns	a	logical	value	indicating	the	direction	of	the	arrow	contained	in	an	arrow
object	with	the	specified	ID	number;	returns	a	value	of	True	for	Down	arrow,	and	a
value	of	False	for	Up	arrow	or	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_GetDirection(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	a	true/false	value,	indicating	the	direction	of	the	arrow	contained	in	an
arrow	object	with	the	ID	number	of	3,	to	DownArrow	variable:

Variable:DownArrow(False);	
DownArrow=Arw_GetDirection(3);

52

Arw_GetFirst

Returns	a	numerical	value,	indicating	the	object	ID	number	of	the	oldest	(the	first	to
be	added	to	the	current	chart)	arrow	object	of	the	specified	origin;	returns	a	value
of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_GetFirst	(Origin)

Parameters

Origin	-	a	numerical	expression	specifying	the	origin	of	the	arrow	object:

	1	-	added	by	the	current	study
	2	-	added	by	a	study	other	then	the	current	study,	or	drawn	manually	by	the	user
	3	-	added	by	any	study,	or	drawn	manually	by	the	user
	4	-	added	by	the	current	study,	or	drawn	manually	by	the	user
	5	-	added	by	a	study	other	then	the	current	study
	6	-	added	by	any	study
	7	-	added	manually	by	the	user

Notes

If	the	oldest	(the	first	added)	arrow	object	is	deleted,	the	next	oldest	(the	second
added)	arrow	object	becomes	the	oldest	(the	first	added)	arrow	object.

Example

Assign	a	value,	indicating	the	object	ID	number	of	the	oldest	arrow	object	added	to
the	chart	by	the	current	study,	to	Value1	variable:

Value1=Arw_GetFirst(1);

53

Arw_GetLock

Locked	arrow	drawings	cannot	be	moved	manually.	Keyword	returns	a	value	of
True	for	locked	drawings,	and	a	value	of	False	for	unlocked.

Usage

Arw_GetLock(ArrowID)

Where:	ArrowID	-	a	numerical	expression	specifying	the	arrow	drawing	ID	number

Notes

An	arrow	ID	number	is	returned	by	Arw_New	when	the	arrow	drawing	is	created.

Example

Assign	Lock	property	of	the	arrow	drawing	with	an	ID	number	of	3	to	Condition1
variable:

Condition1=Arw_GetLock(3);

54

Arw_GetNext

Returns	the	ID	number	of	the	first	existing	arrow	object	added	subsequent	to	an
arrow	object	with	the	specified	ID	number,	with	both	objects	of	a	specified	origin;
returns	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_GetNext(ObjectID,Origin)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Origin	-	a	numerical	expression	specifying	the	origin	of	the	arrow	objects:

	1	-	added	by	the	current	study
	2	-	added	by	a	study	other	then	the	current	study,	or	drawn	manually	by	the	user
	3	-	added	by	any	study,	or	drawn	manually	by	the	user
	4	-	added	by	the	current	study,	or	drawn	manually	by	the	user
	5	-	added	by	a	study	other	then	the	current	study
	6	-	added	by	any	study
	7	-	added	manually	by	the	user

Example

Assign	a	value	to	Value1	variable,	indicating	the	ID	number	of	the	first	existing
arrow	object	added	subsequent	to	an	arrow	object	with	the	ID	number	of	3,	with
both	objects	added	by	the	current	study:

Value1=Arw_GetNext(3,1);

55

Arw_GetSize

Returns	a	numerical	value	indicating	the	size	of	the	arrow	contained	in	an	arrow
object	with	the	specified	ID	number;	returns	a	value	of	-2	if	the	specified	object	ID
number	is	invalid.

Usage

Arw_GetSize(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	a	value,	indicating	the	size	of	the	arrow	in	an	arrow	object	with	the	ID
number	of	3,	to	Value1	variable:

Value1=Arw_GetSize(3);

56

Arw_GetStyle

Returns	a	numerical	value,	indicating	the	style	of	the	arrow	in	an	arrow	object	with
the	specified	ID	number;	returns	a	value	of	-2	if	the	specified	object	ID	number	is
invalid.

Usage

Arw_GetStyle(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	a	value,	indicating	the	style	of	the	arrow	in	an	arrow	object	with	the	ID
number	of	3,	to	Value1	variable:

Value1=Arw_GetStyle(3);

57

Arw_GetText

Returns	a	string	expression	corresponding	to	the	text	contained	in	an	arrow	object
with	the	specified	ID	number.

Usage

Arw_GetText(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Arw_GetText(3)		will	return	a	string	expression	corresponding	to	the	text	contained
in	an	arrow	object	with	the	ID	number	of	3

58

Arw_GetTextAttribute

Returns	a	logical	value	indicating	the	setting	for	an	attribute	of	the	text	in	an	arrow
object	with	the	specified	ID	number;	returns	a	value	of	True	if	the	attribute	is	set	to
on,	and	a	value	of	False	if	the	attribute	is	set	to	off	or	if	the	specified	object	ID
number	is	invalid.

The	settings	of	the	following	attributes	can	be	returned:	border,	bold,	italic,	strike-
out,	and	underline.

Usage

Arw_GetTextAttribute(ObjectID,Attribute)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Attribute	-	a	numerical	expression	specifying	the	attribute:

	0	-	border
	1	-	bold
	2	-	italic
	3	-	strike-out
	4	-	underline

Notes

An	object-specific	ID	number	is	assigned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	a	true/false	value,	indicating	the	setting	of	"bold"	attribute	for	the	arrow
object	with	an	ID	number	of	3,	to	ArwTxtBold	variable:

59

Variable:ArwTxtBold(False);	
ArwTxtBold=Arw_GetTextAttribute(3,1);

60

Arw_GetTextBGColor

Returns	an	RGB	color	number	or	a	legacy	color	value	that	correspond	to	the	text
background	color	of	an	arrow	object	with	the	specified	ID	number;	returns	a	value
of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_GetTextBGColor(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	an	RGB	color	number,	corresponding	to	the	text	background	color	of	an
arrow	object	with	the	ID	number	of	3,	to	Value1	variable:

Value1=Arw_GetTextBGColor(3);

Assign	a	legacy	color	value,	corresponding	to	the	text	background	color	of	an
arrow	object	with	the	ID	number	of	3,	to	Value1	variable:

[LegacyColorValue=True];
Value1=Arw_GetTextBGColor(3);

61

Arw_GetTextColor

Returns	an	RGB	color	number	or	a	legacy	color	value	that	correspond	to	the	color
of	the	text	contained	in	an	arrow	object	with	the	specified	ID	number;	returns	a
value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_GetTextColor(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	an	RGB	color	number,	corresponding	to	the	color	of	the	text	contained	in
an	arrow	object	with	the	ID	number	of	3,	to	Value1	variable:

Value1=Arw_GetTextColor(3);

Assign	a	legacy	color	value,	corresponding	to	the	color	of	the	text	contained	in	an
arrow	object	with	the	ID	number	of	3,	to	Value1	variable:

[LegacyColorValue=True];
Value1=Arw_GetTextColor(3);

62

Arw_GetTextFontName

Returns	a	string	expression	corresponding	to	the	name	of	the	text	font	assigned	to
an	arrow	object	with	the	specified	ID	number.

Usage

Arw_GetTextFontName(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Arw_GetTextFontName(3)		will	return	a	string	expression	corresponding	to	the
name	of	the	text	font	assigned	to	an	arrow	object	with	the	ID	number	of	3

63

Arw_GetTextSize

Returns	a	numerical	value	indicating	the	font	size	assigned	to	the	text	of	an	arrow
object	with	the	specified	ID	number;	returns	a	value	of	-2	if	the	specified	object	ID
number	is	invalid.

Usage

Arw_GetTextSize(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	a	value,	indicating	the	font	size	of	the	text	in	an	arrow	object	with	the	ID
number	of	3,	to	Value1	variable:

Value1=Arw_GetTextSize(3);

64

Arw_GetTime

Returns	a	numerical	value,	indicating	the	time	of	the	bar	at	which	an	arrow	object
with	the	specified	ID	number	has	been	placed;	returns	a	value	of	-2	if	the	specified
object	ID	number	is	invalid.

The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

Arw_GetTime(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	a	value,	indicating	the	time	of	the	bar	at	which	an	arrow	object	with	the	ID
number	of	3	has	been	placed,	to	Value1	variable:

Value1=Arw_GetTime(3);

65

Arw_GetTime_DT

Returns	a	double-precision	decimal	DateTime	value	indicating	the	time	of	the	bar	at
which	an	arrow	object	with	the	specified	ID	number	has	been	placed;	returns	a
value	of	-2	if	the	specified	object	ID	number	is	invalid.

The	time	is	indicated	in	the	DateTime	format,	where	the	integer	portion	of	the
DateTime	value	indicates	the	number	of	days	that	have	elapsed	since	January	1st,
1900,	and	the	fractional	portion	of	the	DateTime	value	indicates	the	fraction	of	the
day	that	has	passed	since	midnight.	DateTime	is	a	floating	point	value	with	high
precision.	It	allows	accessing	millisecond	time	stamps	of	the	bar.

Usage

Arw_GetTime_DT(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New_dt	when	the	arrow	object	is
created.

Example

Assign	a	value,	indicating	the	time	of	the	bar	at	which	an	arrow	object	with	the	ID
number	of	3	has	been	placed,	to	Value1	variable:

Value1=Arw_GetTime_DT(3);

66

Arw_GetTime_s

Returns	a	numerical	value	indicating	the	time	of	the	bar,	including	seconds,	at
which	an	arrow	object	with	the	specified	ID	number	has	been	placed;	returns	a
value	of	-2	if	the	specified	object	ID	number	is	invalid.

The	time	is	indicated	in	the	24-hour	HHmmss	format,	where	130000	=	1:00:00	PM.

Usage

Arw_GetTime_s(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New_s	when	the	arrow	object	is
created.

Example

Assign	a	value,	indicating	the	time	of	the	bar	at	which	an	arrow	object	with	the	ID
number	of	3	has	been	placed,	to	Value1	variable:

Value1=Arw_GetTime_s(3);

67

Arw_GetVal

Returns	the	price	value	(vertical	position,	corresponding	to	a	value	on	the	price
scale	of	a	chart),	at	which	an	arrow	object	with	the	specified	ID	number	has	been
placed;	returns	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_GetVal(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	a	value,	indicating	the	price	value	at	which	an	arow	object	with	the	ID
number	of	3	has	been	placed,	to	Value1	variable:

Value1=Arw_GetVal(3);

68

Arw_Get_Anchor_to_Bars

Returns	the	value	of	"anchor	to	bar"	option	of	the	arrow	drawing	with	a	specified
ID.

Usage

Arw_Get_Anchor_to_Bars(ArrowID)

Where:	ArrowID	is	a	numerical	expression	specifying	the	arrow	drawing	ID
number

Notes

An	arrow	ID	number	is	returned	by	Arw_New	when	the	arrow	drawing	is	created.

Example

Assign	"anchor	to	bars"	option	of	the	arrow	drawing	with	an	ID	number	of	3	to	the
Condition1	variable:

Condition1=Arw_Get_Anchor_to_Bars(3);

69

Arw_Lock

Locks	corresponding	arrow	drawing	so	it	cannot	be	moved	manually;	returns	a
value	of	0	if	the	operation	was	performed	successfully,	and	a	value	of	-2	if	the
specified	trendline	ID	number	is	invalid.

Usage

Arw_Lock(ArrowID,LogicalExpression)

Where:	ArrowID	-	a	numerical	expression	specifying	the	arrow	drawing	ID	number
													LogicalExpression	-	a	logical	value;	True	=	Add	and	False	=	Remove

Notes

An	arrow	ID	number	is	returned	by	Arw_New	when	the	arrow	drawing	is	created.

Example

Lock	the	arrow	drawing	with	an	ID	number	of	3:

Value1=Arw_Lock(3,True);

Unlock	the	arrow	drawing	with	an	ID	number	of	5:

Value1=Arw_Lock(5,False);

70

Arw_New

Displays	an	object,	consisting	of	an	up	or	a	down	arrow	located	at	the	specified	bar
and	specified	price	value,	on	the	chart	that	the	study	is	based	on;	returns	an	object-
specific	ID	number,	required	to	modify	the	object.

Usage

Arw_New	(BarDate,	BarTime,	PriceValue,	Direction)

Parameters

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime	-	a	numerical	expression	specifying	the	time	of	the	bar	at	which	the	object
is	to	be	placed;	the	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=
1:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Direction	-	a	logical	expression	specifying	the	direction	of	the	arrow;	True	=
Down	and	False	=	Up

Example

Place,	on	the	chart	that	the	study	is	based	on,	an	up	arrow	at	the	top	of	a	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Arw_New(Date,Time,High,False);

71

Arw_New_BN

Displays	an	object	consisting	of	an	up	or	a	down	arrow	located	at	the	specified	bar
and	specified	price	value	on	the	chart	that	the	study	is	based	on;	returns	an	object-
specific	ID	number	required	to	modify	the	object.

Usage

Arw_New_BN	(BarNumber,	PriceValue,	Direction)

Parameters

BarNumber	-	a	numerical	expression	specifying	the	bar	number	at	which	the	object
is	to	be	placed.

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	should	be
placed.

Direction	-	a	logical	expression	specifying	the	direction	of	the	arrow;	True	=
Down	and	False	=	Up

Example

On	the	chart	that	the	study	is	based	on,	place	an	up	arrow	at	the	top	of	a	current	bar
if	the	Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Arw_New_BN(currentbar,High,False);

72

Arw_New_DT

Displays	an	object,	consisting	of	an	up	or	a	down	arrow	located	at	the	specified	bar
and	specified	price	value,	on	the	chart	that	the	study	is	based	on;	returns	an	object-
specific	ID	number,	required	to	modify	the	object.

Usage

Arw_New_DT	(Bar_DateTime,	PriceValue,	Direction)

Parameters

Bar_DateTime	-	a	numerical	expression	specifying	the	date	and	time	of	the	bar	at
which	the	object	is	to	be	placed.	The	date	and	time	are	indicated	in	the	DateTime
format,	where	the	integer	portion	of	the	DateTime	value	indicates	the	number	of
days	that	have	elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the
DateTime	value	indicates	the	fraction	of	the	day	that	has	passed	since	midnight.
DateTime	is	a	floating	point	value	with	high	precision.	It	allows	accessing
millisecond	time	stamps	of	the	bar.

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed.

Direction	-	a	logical	expression	specifying	the	direction	of	the	arrow;	True	=
Down	and	False	=	Up

Example

Place,	on	the	chart	that	the	study	is	based	on,	an	up	arrow	at	the	top	of	a	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Arw_New_DT(DateTime,High,False);

73

Arw_New_s

Displays	an	object,	consisting	of	an	up	or	a	down	arrow	located	at	the	specified	bar
and	specified	price	value,	on	the	chart	that	the	study	is	based	on;	returns	an	object-
specific	ID	number,	required	to	modify	the	object.

Usage

Arw_New_s	(BarDate,	BarTime_s,	PriceValue,	Direction)

Parameters

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime_s	-	a	numerical	expression	specifying	the	time	of	the	bar,	including
seconds,	at	which	the	object	is	to	be	placed;	the	time	is	indicated	in	the	24-hour
HHmmss	format,	where	130000	=	1:00:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Direction	-	a	logical	expression	specifying	the	direction	of	the	arrow;	True	=
Down	and	False	=	Up

Example

Place,	on	the	chart	that	the	study	is	based	on,	an	up	arrow	at	the	top	of	a	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Arw_New_s(Date,Time_s,High,False);

74

Arw_New_self

Displays	an	object,	consisting	of	an	up	or	a	down	arrow	located	at	the	specified	bar
and	specified	price	value,	on	the	SubChart	containing	the	study;	returns	an	object-
specific	ID	number,	required	to	modify	the	object.

Usage

Arw_New_self	(BarDate,	BarTime,	PriceValue,	Direction)

Parameters

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime	-	a	numerical	expression	specifying	the	time	of	the	bar	at	which	the	object
is	to	be	placed;	the	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=
1:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Direction	-	a	logical	expression	specifying	the	direction	of	the	arrow;	True	=
Down	and	False	=	Up

Example

Place,	on	the	SubChart	containing	the	study,	an	up	arrow	at	the	top	of	a	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Arw_New_self(Date,Time,High,False);

75

ARW_New_Self_BN
The	same	as	Arw_New_BN.	Difference:	Displays	a	arrow	on	the	SubChart	containing
the	study.

76

Arw_New_Self_DT

Displays	an	object,	consisting	of	an	up	or	a	down	arrow	located	at	the	specified	bar
and	specified	price	value,	on	the	SubChart	containing	the	study;	returns	an	object-
specific	ID	number,	required	to	modify	the	object.

Usage

Arw_New_Self_DT	(Bar_DateTime,	PriceValue,	Direction)

Parameters

Bar_DateTime	-	a	numerical	expression	specifying	the	date	and	time	of	the	bar	at
which	the	object	is	to	be	placed.	The	date	and	time	are	indicated	in	the	DateTime
format,	where	the	integer	portion	of	the	DateTime	value	indicates	the	number	of
days	that	have	elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the
DateTime	value	indicates	the	fraction	of	the	day	that	has	passed	since	midnight.
DateTime	is	a	floating	point	value	with	high	precision.	It	allows	accessing
millisecond	time	stamps	of	the	bar.

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed.

Direction	-	a	logical	expression	specifying	the	direction	of	the	arrow;	True	=
Down	and	False	=	Up

Example

Place,	on	the	SubChart	containing	the	study,	an	up	arrow	at	the	top	of	a	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Arw_New_Self_DT(DateTime,High,False);

77

Arw_New_self_s

Displays	an	object,	consisting	of	an	up	or	a	down	arrow	located	at	the	specified	bar
and	specified	price	value,	on	the	SubChart	containing	the	study;	returns	an	object-
specific	ID	number,	required	to	modify	the	object.

Usage

Arw_New_self_s	(BarDate,	BarTime_s,	PriceValue,	Direction)

Parameters

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime_s	-	a	numerical	expression	specifying	the	time	of	the	bar,	including
seconds,	at	which	the	object	is	to	be	placed;	the	time	is	indicated	in	the	24-hour
HHmmss	format,	where	130000	=	1:00:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Direction	-	a	logical	expression	specifying	the	direction	of	the	arrow;	True	=
Down	and	False	=	Up

Example

Place,	on	the	SubChart	containing	the	study,	an	up	arrow	at	the	top	of	a	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Arw_New_self_s(Date,Time_s,High,False);

78

Arw_SetBarNumber

Assigns	the	specified	barnumber	to	the	arrow	object	with	the	specified	ID	number;
returns	a	value	of	0	if	the	barnumber	was	successfully	assigned,	and	a	value	of	-2	if
the	specified	object	ID	number	is	invalid.

Usage

Arw_SetBarNumber(ref,Barnumber)

Parameters:

ref	-	ID	of	the	arrow	object
Barnumber	-	the	new	bar	number	that	is	to	be	assigned	to	the	specified	object.

Example

Assign	the	new	barnumber	value	of	100	to	the	arrow	object	with	ID	=	1:

Arw_SetBarNumber(1,	100);

79

Arw_SetColor

Assigns	the	specified	color	to	the	arrow	contained	in	an	arrow	object	with	the
specified	ID	number;	returns	a	value	of	0	if	the	color	was	successfully	assigned,
and	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_SetColor(ObjectID,ArrowColor)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

ArrowColor	-	an	expression	specifying	the	color	of	the	arrow

The	color	can	be	specified	by	a	numerical	expression	representing	an	RGB	color
number	or	a	legacy	color	value,	or	by	one	of	17	base	color	words.

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	the	color	blue	to	the	arrow	contained	in	an	arrow	object	with	the	ID	number
of	3:

Value1=Arw_SetColor(3,Blue);

Assign	the	RGB	color	2138336	(Orange)	to	the	arrow	contained	in	an	arrow	object
with	the	ID	number	of	3:

Value1=Arw_SetColor(3,2138336);

80

Assign	the	legacy	color	4	(Green)	to	the	arrow	contained	in	an	arrow	object	with
the	ID	number	of	3:

[LegacyColorValue=True];
Value1=Arw_SetColor(3,4);

81

Arw_SetLocation

Modifies	the	location	of	an	arrow	object	with	the	specified	ID	number;	returns	a
value	of	0	if	the	location	of	the	object	was	successfully	modified,	and	a	value	of	-2
if	the	specified	object	ID	number	is	invalid.

Usage

Arw_SetLocation	(ObjectID,	BarDate,	BarTime,	PriceValue)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime	-	a	numerical	expression	specifying	the	time	of	the	bar	at	which	the	object
is	to	be	placed;	the	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=
1:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Move	the	arrow	object	with	an	ID	number	of	3	to	the	top	of	the	current	bar:

Value1=Arw_SetLocation(3,Date,Time,High);

82

83

Arw_SetLocation_BN

Modifies	location	of	an	arrow	object	with	the	specified	ID	number;	returns	a	value
of	0	if	location	of	the	object	was	successfully	modified,	and	a	value	of	-2	if	the
specified	object	ID	number	is	invalid.

Usage

Arw_SetLocation_BN	(ObjectID,	BarNumber,	PriceValue)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number.

BarNumber	-	a	numerical	expression	specifying	the	bar	number	at	which	the	object
is	to	be	placed.

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	should	be
placed.

Notes

An	object-specific	ID	number	is	returned	by	Arw_New_Dt	when	the	arrow	object	is
created.

Example

Move	the	arrow	object	with	an	ID	number	of	3	to	the	top	of	the	current	bar:

Value1=Arw_SetLocation_BN(3,	currentbar,High);

84

Arw_SetLocation_DT

Modifies	the	location	of	an	arrow	object	with	the	specified	ID	number;	returns	a
value	of	0	if	the	location	of	the	object	was	successfully	modified,	and	a	value	of	-2
if	the	specified	object	ID	number	is	invalid.

Usage

Arw_SetLocation_DT	(ObjectID,	Bar_DateTime,	PriceValue)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number.

Bar_DateTime	-	a	numerical	expression	specifying	the	date	and	time	of	the	bar	at
which	the	object	is	to	be	placed.	The	date	and	time	are	indicated	in	the	DateTime
format,	where	the	integer	portion	of	the	DateTime	value	indicates	the	number	of
days	that	have	elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the
DateTime	value	indicates	the	fraction	of	the	day	that	has	passed	since	midnight.
DateTime	is	a	floating	point	value	with	high	precision.	It	allows	accessing
millisecond	time	stamps	of	the	bar.

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed.

Notes

An	object-specific	ID	number	is	returned	by	Arw_New_Dt	when	the	arrow	object	is
created.

Example

Move	the	arrow	object	with	an	ID	number	of	3	to	the	top	of	the	current	bar:

Value1=Arw_SetLocation_DT(3,	DateTime,High);

85

86

Arw_SetLocation_s

Modifies	the	location	of	an	arrow	object	with	the	specified	ID	number;	returns	a
value	of	0	if	the	location	of	the	object	was	successfully	modified,	and	a	value	of	-2
if	the	specified	object	ID	number	is	invalid.

Usage

Arw_SetLocation_s	(ObjectID,	BarDate,	BarTime_s,	PriceValue)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime_s	-	a	numerical	expression	specifying	the	time	of	the	bar,	including
seconds,	at	which	the	object	is	to	be	placed;	the	time	is	indicated	in	the	24-hour
HHmmss	format,	where	130000	=	1:00:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Notes

An	object-specific	ID	number	is	returned	by	Arw_New_s	when	the	arrow	object	is
created.

Example

Move	the	arrow	object	with	an	ID	number	of	3	to	the	top	of	the	current	bar:

Value1=Arw_SetLocation_s(3,Date,Time_s,High);

87

88

Arw_SetSize

Assigns	the	specified	size	to	the	arrow	contained	in	an	arrow	object	with	the
specified	ID	number;	returns	a	value	of	0	if	the	size	was	successfully	assigned,	and
a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_SetSize(ObjectID,ArrowSize)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number	
													ArrowSize	-	a	numerical	expression	specifying	the	arrow	size

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	an	arrow	size	of	10	to	the	arrow	object	with	an	ID	number	of	3:

Value1=Arw_SetSize(3,10);

89

Arw_SetStyle

Assigns	the	specified	style	to	the	arrow	of	an	arrow	object	with	the	specified	ID
number;	returns	a	value	of	0	if	the	arrow	style	was	successfully	modified,	and	a
value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_SetStyle(ObjectID,ArrowStyle)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number	
													ArrowStyle	-	a	numerical	expression	specifying	the	arrow	style;	arrow
styles	range	from	0	to	13

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	the	arrow	style	of	5	to	an	arrow	object	with	the	ID	number	of	3:

Value1=Arw_SetStyle(3,5);

90

Arw_SetText

Adds	text	to,	or	replaces	the	existing	text	contained	in	an	arrow	object	with	the
specified	ID	number;	returns	a	value	of	-2	if	the	specified	object	ID	number	is
invalid.

Usage

Arw_SetText(ObjectID,"Text")

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number	
													Text	-	the	string	expression	to	be	displayed	in	the	arrow	object

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Add	text	"My	Arrow"	to	the	arrow	object	with	an	ID	number	of	3:

Value1=Arw_SetText(3,"My	Arrow");

Replace	text	contained	in	the	arrow	object	with	an	ID	number	of	3	with	the	string
expression	"New	Text":

Value1=Arw_SetText(3,"New	Text");

91

Arw_SetTextAttribute

Sets	an	attribute	of	the	text	in	an	arrow	object	with	the	specified	ID	number;	returns
a	value	of	0	if	the	attribute	was	successfully	set,	and	a	value	of	-2	if	the	specified
object	ID	number	is	invalid.

The	following	text	attributes	can	be	set:	border,	bold,	italic,	strike-out,	and
underline.

Usage

Arw_SetTextAttribute(ObjectID,Attribute,LogicalExpression)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Attribute	-	a	numerical	expression	specifying	the	attribute:

	0	-	border
	1	-	bold
	2	-	italic
	3	-	strike-out
	4	-	underline

LogicalExpression	-	a	logical	value;	True	=	on	and	False	=	off

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Set	the	attribute	"bold"	to	on	for	the	text	in	an	arrow	object	with	the	ID	number	of	3:

92

Value1=Arw_SetTextAttribute(3,1,True);

93

Arw_SetTextBGColor

Assigns	the	specified	background	color	to	the	text	of	an	arrow	object	with	the
specified	ID	number;	returns	a	value	of	0	if	the	color	was	successfully	assigned,
and	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_SetTextBGColor(ObjectID,TextBGColor)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

TextBGColor	-	an	expression	specifying	the	text	background	color

The	color	can	be	specified	by	a	numerical	expression	representing	an	RGB	color
number	or	a	legacy	color	value,	or	by	one	of	17	base	color	words.

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	the	color	blue	to	the	text	background	of	an	arrow	object	with	the	ID	number
of	3:

Value1=Arw_SetTextBGColor(3,Blue);

Assign	the	RGB	color	2138336	(Orange)	to	the	text	background	of	an	arrow	object
with	the	ID	number	of	3:

Value1=Arw_SetTextBGColor(3,2138336);

94

Assign	the	legacy	color	4	(Green)	to	the	text	background	of	an	arrow	object	with
the	ID	number	of	3:

[LegacyColorValue=True];
Value1=Arw_SetTextBGColor(3,4);

95

Arw_SetTextColor

Assigns	the	specified	color	to	the	text	contained	in	an	arrow	object	with	the
specified	ID	number;	returns	a	value	of	0	if	the	color	was	successfully	assigned,
and	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_SetTextColor(ObjectID,TextColor)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

TextColor	-	an	expression	specifying	the	color	of	the	text

The	color	can	be	specified	by	a	numerical	expression	representing	an	RGB	color
number	or	a	legacy	color	value,	or	by	one	of	17	base	color	words.

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	the	color	blue	to	the	text	contained	in	an	arrow	object	with	the	ID	number	of
3:

Value1=Arw_SetTextColor(3,Blue);

Assign	the	RGB	color	2138336	(Orange)	to	the	text	contained	in	an	arrow	object
with	the	ID	number	of	3:

Value1=Arw_SetTextColor(3,2138336);

96

Assign	the	legacy	color	4	(Green)	to	the	text	contained	in	an	arrow	object	with	the
ID	number	of	3:

[LegacyColorValue=True];
Value1=Arw_SetTextColor(3,4);

97

Arw_SetTextFontName

Assigns	the	specified	font	to	the	text	of	an	arrow	object	with	the	specified	ID
number;	returns	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Any	font	in	the	Fonts	folder	can	be	used;	the	folder	is	accessible	from	the	Control
Panel	in	Windows	XP	operating	system.

Usage

Arw_SetTextFontName(ObjectID,"FontName")

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number	
													FontName	-	a	string	expression	specifying	the	font	name

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	font	Verdana	to	the	text	of	an	arrow	object	with	the	ID	number	of	3:

Value1=Arw_SetTextFontName(3,"Verdana");

98

Arw_SetTextSize

Assigns	the	specified	font	size	to	the	text	of	an	arrow	object	with	the	specified	ID
number;	returns	a	value	of	0	if	the	font	size	was	successfully	assigned,	and	a	value
of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Arw_SetTextSize(ObjectID,FontSize)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number	
													FontSize	-	a	numerical	expression	specifying	the	font	size

Notes

An	object-specific	ID	number	is	returned	by	Arw_New	when	the	arrow	object	is
created.

Example

Assign	the	font	size	of	16	to	the	text	of	an	arrow	object	with	the	ID	number	of	3:

Value1=Arw_SetTextSize(3,16);

99

MC_Arw_GetActive
Returns	a	numerical	value	indicating	the	arrow	ID	number	of	the	currently	selected
arrow;	returns	a	value	of	-1	if	no	arrows	are	currently	selected.

Usage

MC_Arw_GetActive

Example

Assign	a	value,	indicating	the	arrow	ID	number	of	the	currently	selected	arrow,	to
Value1	variable:	Value1	=	MC_Arw_GetActive;

100

AllowSendOrdersAlways

Attribute	set	to	True	allows	order	generation	even	when	barstatus	is	not	defined	(-1
will	be	returned).

Usage

[AllowSendOrdersAlways	=	LogicalValue]

Where:	LogicalValue	-	a	true/false	value;	True	=	Enable;	False	=	Disable

If	the	attribute	is	set	to	False,	or	not	present	in	the	study's	code,	it	doesn't	allow
order	generation	when	barstatus	is	not	defined.

If	the	attribute	is	set	to	True,	then	allows	generation	even	when	barstatus	=	-1.

Example

Enable	AllowSendOrdersAlways	value:

[AllowSendOrdersAlways	=	True];

101

IntraBarOrderGeneration

Toggles	intra-bar	order	generation	flag	on	or	off.

Usage

[IntrabarOrderGeneration	=	LogicalValue]

Where:	LogicalValue	-	a	true/false	value;	True	=	Enable;	False	=	Disable

If	the	attribute	is	not	present	in	the	study's	code,	intra-bar	order	generation	can	be
set	by	the	user	in	the	Calculations	tab	of	the	Format	Signal	window.

If	set	to	True,	"Enable	intra-bar	order	generation	and	calculation"	check	box	will	be
checked	and	grayed	out,	and	the	radio	buttons	will	be	available.

If	set	to	False,	"Enable	intra-bar	order	generation	and	calculation"	check	box	will
be	unchecked	and	grayed	out,	and	the	radio	buttons	disabled.

Notes

Attributes	are	applied	at	the	time	of	compilation	and	cannot	be	changed	at	run-time.

Example

Enable	intra-bar	order	generation:

[IntrabarOrderGeneration	=	True];

102

LegacyColorValue

Specifies	the	color	designation	scheme	to	be	used	for	interpretation	of	numerical
color	values.

Usage

[LegacyColorValue	=	LogicalValue]

Where:	LogicalValue	-	a	true/false	value;	True	=	Enable;	False	=	Disable

If	the	attribute	is	set	to	False,	or	not	present	in	the	study's	code,	the	RGB	(new)	16M
color	scheme	will	be	used.

If	LegacyColorValue	the	attribute	is	set	to	True,	the	legacy	(old)	16-bit,	16-color
scheme	will	be	used.

Notes

When	a	color	name	is	converted	to	a	numerical	color	value,	the	specified	scheme
will	be	followed.

To	ensure	compatibility,	the	attribute	[LegacyColorValue	=	True]	is	inserted
automatically	when	older	versions,	prior	to	v8.1,	of	EasyLanguage	studies	are
imported.

Example

Enable	legacy	color	value	interpretation:

[LegacyColorValue	=	True];

Create	a	Green	color	plot	using	the	legacy	color	scheme:

[LegacyColorValue	=	True];

103

Plot1(Open);

SetPlotColor(1,4);

Create	a	Green	color	plot	using	the	RGB	color	scheme:

[LegacyColorValue	=	False];

Plot1(Open);

SetPlotColor(1,65280);

Assign	a	value,	representing	the	color	Green	under	the	legacy	color	scheme,	to
Value1	(Value1	will	be	assigned	a	value	of	4):

[LegacyColorValue	=	True];

Value1=Green;

Assign	a	value,	representing	the	color	Green	under	the	RGB	color	scheme,	to
Value1	(Value1	will	be	assigned	a	value	of	65280):

[LegacyColorValue	=	False];

Value1=Green;

104

ProcessMouseEvents

Declares	that	the	study	processes	mouse	events.

Usage

[ProcessMouseEvents	=	LogicalValue]

Where:	LogicalValue	-	a	true/false	value;	True	=	Enable;	False	=	Disable

Notes

If	this	attribute	is	not	present	in	the	study's	code,	the	indicator	based	in	the
mouse	events	will	not	be	calculated.
Can	be	used	only	in	signals	and	indicators

Example

[ProcessMouseEvents	=	True];

105

SameExitFromOneEntryOnce

Attribute	defines	possibility	of	position	Exit	using	one	and	the	same	order.	If	it	is
not	specified	in	the	script,	then	set	to	True	by	default.

Usage

[SameExitFromOneEntryOnce	=	LogicalValue]

Where:	LogicalValue	-	a	true/false	value;	True	=	Enable;	False	=	Disable

If	the	attribute	is	set	to	True,	or	not	present	in	the	study's	code,	then	exit	from	the
specified	position	using	one	and	the	same	order	is	not	possible.

If	the	attribute	is	set	to	False,	then	specified	position	can	be	closed	using	one	and
the	same	order	unlimitedly.

Example

Disable	SameExitFromOneEntryOnce	value	interpretation:

[SameExitFromOneEntryOnce	=	False];

buy	5	contracts	next	bar	market;

sell	1	contracts	next	bar	market;

When	backtesting	the	given	strategy	one	and	the	same	Exit	order	(generated	by	sell
next	bar	market	command)	is	applied	for	partial	position	close	5	times.

Commenting	out	the	first	script	line	default	behavior	will	be	obtained.	Exit	order
will	trigger	only	once.

106

Black

Constant,	used	to	designate	the	color	Black.

Usage

Black

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	Black:

Plot1(Open);
SetPlotColor(1,Black);

107

Blue

Constant,	used	to	designate	the	color	Blue.

Usage

Blue

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	Blue:

Plot1(Open);
SetPlotColor(1,Blue);

108

Cyan

Constant,	used	to	designate	the	color	Cyan.

Usage

Cyan

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	Cyan:

Plot1(Open);
SetPlotColor(1,Cyan);

109

DarkBlue

Constant,	used	to	designate	the	color	DarkBlue.

Usage

DarkBlue

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	DarkBlue:

Plot1(Open);
SetPlotColor(1,DarkBlue);

110

DarkBrown

Constant,	used	to	designate	the	color	DarkBrown.

Usage

DarkBrown

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	DarkBrown:

Plot1(Open);
SetPlotColor(1,DarkBrown);

111

DarkCyan

Constant,	used	to	designate	the	color	DarkCyan.

Usage

DarkCyan

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	DarkCyan:

Plot1(Open);
SetPlotColor(1,DarkCyan);

112

DarkGray

Constant,	used	to	designate	the	color	DarkGray.

Usage

DarkGray

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	DarkGray:

Plot1(Open);
SetPlotColor(1,DarkGray);

113

DarkGreen

Constant,	used	to	designate	the	color	DarkGreen.

Usage

DarkGreen

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	DarkGreen:

Plot1(Open);
SetPlotColor(1,DarkGreen);

114

DarkMagenta

Constant,	used	to	designate	the	color	DarkMagenta.

Usage

DarkMagenta

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	DarkMagenta:

Plot1(Open);
SetPlotColor(1,DarkMagenta);

115

DarkRed

Constant,	used	to	designate	the	color	DarkRed.

Usage

DarkRed

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	DarkRed:

Plot1(Open);
SetPlotColor(1,DarkRed);

116

DarkYellow

Constant,	used	to	designate	the	color	DarkYellow.

Usage

DarkYellow

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	DarkYellow:

Plot1(Open);
SetPlotColor(1,DarkYellow);

117

GetBValue
Returns	the	Blue	color	component	value	of	an	RGB	color	number;	the	value	ranges
from	0	to	255.

Usage

GetBValue(BigRGBValue)

Where:	BigRGBValue	-	an	RGB	color	number	from	0	to	16777215

Example

Assign	a	value,	representing	the	Blue	color	component	of	the	RGB	color	number
2138336	(Orange),	to	Value1	(Value1	will	be	assigned	a	value	of	32):

Value1=GetBValue(2138336);

118

GetGValue
Returns	the	Green	color	component	value	of	an	RGB	color	number;	the	value
ranges	from	0	to	255.

Usage

GetGValue(BigRGBValue)

Where:	BigRGBValue	-	an	RGB	color	number	from	0	to	16777215

Example

Assign	a	value,	representing	the	Green	color	component	of	the	RGB	color	number
2138336	(Orange),	to	Value1	(Value1	will	be	assigned	a	value	of	160):

Value1=GetGValue(2138336);

119

GetRValue
Returns	the	Red	color	component	value	of	an	RGB	color	number;	the	value	ranges
from	0	to	255.

Usage

GetRValue(BigRGBValue)

Where:	BigRGBValue	-	an	RGB	color	number	from	0	to	16777215

Example

Assign	a	value,	representing	the	Red	color	component	of	the	RGB	color	number
2138336	(Orange),	to	Value1	(Value1	will	be	assigned	a	value	of	224):

Value1=GetRValue(2138336);

120

GradientColor
Returns	an	RGB	color	number,	representing	a	shade	of	color	from	within	a	defined
color	range.	The	gradient	shade	of	color	is	determined	by	the	value	of	the	specified
numerical	expression	in	relation	to	the	defined	value	range.

For	example,	if	the	color	range	is	defined	as	White	to	Black,	and	the	value	range	is
defined	from	0	to	2,	GradientColor	will	return	an	RGB	color	number	representing
White	for	the	value	of	0,	Gray	for	the	value	of	1,	and	Black	for	the	value	of	2.
White	will	be	returned	for	all	values	<	0,	and	Black	for	all	values	>	2.

Usage

GradientColor(Value,Min,Max,StartColor,EndColor)

Where:	Value		the	specified	numerical	expression
													Min		the	minimum	value	of	the	value	range;	if	Value=Min,	StartColor	is
returned
													Max		the	maximum	value	of	the	value	range;	if	Value=Max,	EndColor	is
returned
													StartColor		the	starting	color	of	the	color	range
													EndColor		the	ending	color	of	the	color	range

Example

Plot	an	ADX	indicator	in	Gradient	Color,	where	Magenta	gradually	changes	into
White	for	the	indicator	values	from	5	to	50:

Variable:ADXValue(0);
ADXValue=ADX(14);
Plot1(ADXValue,"ADXValue");
SetPlotColor	(1,GradientColor	(ADXValue,5,50,	Magenta,White));

121

Green

Constant,	used	to	designate	the	color	Green.

Usage

Green

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	Green:

Plot1(Open);
SetPlotColor(1,Green);

122

LegacyColorToRGB
Returns	an	RGB	color	number	that	corresponds	to	the	specified	legacy	color	value;
the	number	ranges	from	0	to	16777215.

Usage

LegacyColorToRGB(LegacyColorValue)

Where:	LegacyColorValue	-	a	legacy	color	value	from	1	to	16

Example

Assign	a	value,	representing	the	color	4	(Green)	under	the	legacy	color	scheme,	to
Value1	(Value1	will	be	assigned	a	value	of	65280):

Value1	=	LegacyColorToRGB(4);

123

LightGray

Constant,	used	to	designate	the	color	LightGray.

Usage

LightGray

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	LightGray:

Plot1(Open);
SetPlotColor(1,LightGray);

124

Magenta

Constant,	used	to	designate	the	color	Magenta.

Usage

Magenta

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	Magenta:

Plot1(Open);
SetPlotColor(1,Magenta);

125

Red

Constant,	used	to	designate	the	color	Red.

Usage

Red

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	Red:

Plot1(Open);
SetPlotColor(1,Red);

126

RGB
Returns	an	RGB	color	number	that	corresponds	to	the	specified	combination	of
red,	green,	and	blue	component	color	values;	the	number	ranges	from	0	to
16777215	and	represents	one	of	16	M	colors.

Usage

RGB	(Red,Green,Blue)

Where:	Red			a	numerical	value	from	0	to	255,	specifying	the	Red	component	of	the
RGB	color
												Green		a	numerical	value	from	0	to	255,	specifying	the	Green	component	of
the	RGB	color
												Blue				a	numerical	value	from	0	to	255,	specifying	the	Blue	component	of
the	RGB	color

Example

Create	an	Orange	color	plot	using	the	RGB	color	combination:

Plot1(Open);
SetPlotColor(1,RGB(224,160,32));

127

RGBToLegacyColor
Returns	the	legacy	color	value	that	most	closely	matches	the	specified	RGB	color
number;	the	value	ranges	from	0	to	16.

Usage

RGBToLegacyColor(RGBColorValue)

Where:	RGBColorValue	-	an	RGB	color	number	from	0	to	16777215

Example

Assign	a	value,	representing	the	color	65280	(Green)	under	the	RGB	color	scheme,
to	Value1	(Value1	will	be	assigned	a	value	of	4):

Value1=RGBToLegacyColor(65280);

128

White

Constant,	used	to	designate	the	color	White.

Usage

White

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	White:

Plot1(Open);
SetPlotColor(1,White);

129

Yellow

Constant,	used	to	designate	the	color	Yellow.

Usage

Yellow

Notes

The	base	17	colors	can	be	designated	by	constants.

Example

Create	a	plot	using	the	color	Yellow:

Plot1(Open);
SetPlotColor(1,Yellow);

130

Above
Used	in	combination	with	Cross	to	specify	the	direction	of	the	cross.

Above	specifies	an	upward	(lesser	to	a	greater	value)	direction.

The	plot	of	A	is	defined	as	having	crossed	Above	the	plot	of	B	if	the	value	of	A	is
greater	than	the	value	of	B	and	one	of	the	following	is	true:

a)	The	value	of	A	was	less	than	the	value	of	B	on	the	bar	immediately	preceding	the
current	bar

or

b)	The	values	of	A	and	B	were	equal	for	a	consecutive	sequence	of	one	or	more
bars	immediately	preceding	the	current	bar	and	the	value	of	A	was	less	than	the
value	of	B	on	the	bar	immediately	preceding	this	sequence	of	bars.	

For	more	information	see	Cross.

Usage

E1	Cross	Above	E2

or:

Plot1	Cross	Above	Plot2

Where:	E	-	a	numerical	expression

Example

Trigger	an	alert	on	the	bar	where	the	Close	price	crosses	above	1350.00:

Plot1(Close);	
If	Plot1	Cross	Above	1350.50	Then	
Alert("Price	has	crossed	above	1350.00");

131

And
A	logical	(Boolean)	operator	that	returns	True	only	if	both	of	its	operands	are	true.
Logical	operators	are	used	in	logical	(Boolean)	expressions	that	operate	with
true/false	values.

Usage

E1	And	E2

Where:	E	-	true/false	expressions

Example

2=1	And	2=2			will	return	a	value	of	False

True	And	True	And	True			will	return	a	value	of	True

132

Begin
Used	in	combination	with	End	to	group	instructions	for	conditional	execution;	a
Begin	must	always	be	followed	by	an	End.

Begin	and	End	can	be	used	with	Then,	Else,	For,	and	While	conditional	statements.

Begin	should	not	be	followed	by	a	semicolon	(;),	code	lines	within	an	instruction
group	should	end	with	a	semicolon	(;),	and	only	the	last	instance	of	End	within	the
same	conditional	execution	statement	should	be	followed	by	a	semicolon	(;).

Usage

CS	Begin	I1;
I2;

I3;

End;

Where:	CS	-	conditional	statement
													I	-	conditional	instructions

Example

If	UpTrend	is	true	then	buy,	otherwise	sell	short:	

If	UpTrend	Then	Begin
Buy	Next	Bar	Market;
End

Else	Begin

SellShort	Next	Bar	Market;
End;

133

Below
Used	in	combination	with	Cross	to	specify	the	direction	of	the	cross.

Below	specifies	a	downward	(greater	to	a	lesser	value)	direction.

The	plot	of	A	is	defined	as	having	crossed	Below	the	plot	of	B	if	the	value	of	A	is
less	than	the	value	of	B	and	one	of	the	following	is	true:

a)	The	value	of	A	was	more	than	the	value	of	B	on	the	bar	immediately	preceding
the	current	bar,

or

b)	The	values	of	A	and	B	were	equal	for	a	consecutive	sequence	of	one	or	more
bars	immediately	preceding	the	current	bar	and	the	value	of	A	was	more	than	the
value	of	B	on	the	bar	immediately	preceding	this	sequence	of	bars.	

For	more	information	see	Cross.

Usage

E1	Cross	Below	E2

or:

Plot1	Cross	Below	Plot2

Where:	E	-	a	numerical	expression

Example

Trigger	an	alert	on	the	bar	where	the	Close	price	crosses	below	1350.00:

Plot1(Close);
If	Plot1	Cross	Below	1350.50	Then
Alert("Price	has	crossed	below	1350.00");

134

Break
Breaks	the	loop	execution.

Usage

Break;

Example

For	value1	=	0	to	10	Begin	
If	(close[value1]	=	open[value1])	then	Break;	
End;	
If	value1	<=	10	then	print("Open	=	Close	",	value1:0:0,	"	bars	ago.");

135

case
Part	of	switch-case	operator.

Usage

See	in	example

Example

switch	getplotcolor	(1)	begin	case	green:	
print("Indicator	in	green	zone	on	bar	",	currentbar);	
case	red:	
print("Indicator	in	red	zone	on	bar	",	currentbar);	
case	red:	
print("Indicator	is	neutral	on	bar	",	currentbar);	
end;

136

Cross
Returns	a	value	of	True	if,	on	the	current	bar,	the	plot	of	a	numerical	expression	A
crossed	the	plot	of	a	numerical	expression	B	in	the	specified	direction.

Above,	Over,	Below,	or	Under	parameters	specify	the	direction	of	the	cross;	Above
and	Over	are	transposable	and	specify	an	upward	(lesser	to	a	greater	value)
direction,	and	Below	and	Under	are	transposable	and	specify	a	downward	(greater
to	a	lesser	value)	direction.	

The	plot	of	A	is	defined	as	having	crossed	Above	or	Over	the	plot	of	B	if	the	value
of	A	is	greater	than	the	value	of	B	and	one	of	the	following	is	true:

a)	The	value	of	A	was	less	than	the	value	of	B	on	the	bar	immediately	preceding	the
current	bar

or

b)	The	values	of	A	and	B	were	equal	for	a	consecutive	sequence	of	one	or	more
bars	immediately	preceding	the	current	bar	and	the	value	of	A	was	less	than	the
value	of	B	on	the	bar	immediately	preceding	this	sequence	of	bars.	

The	plot	of	A	is	defined	as	having	crossed	Below	or	Under	the	plot	of	B	if	the	value
of	A	is	less	than	the	value	of	B	and	one	of	the	following	is	true:

a)	The	value	of	A	was	more	than	the	value	of	B	on	the	bar	immediately	preceding
the	current	bar,

or

b)	The	values	of	A	and	B	were	equal	for	a	consecutive	sequence	of	one	or	more
bars	immediately	preceding	the	current	bar	and	the	value	of	A	was	more	than	the
value	of	B	on	the	bar	immediately	preceding	this	sequence	of	bars.

Usage

E1	Cross	Direction	E2

or:

137

Plot1	Cross	Direction	Plot2

Where:	E	-	a	numerical	expression
													Direction	-	a	required	parameter;	specifies	the	direction	of	the	cross

Example

Trigger	an	alert	on	the	bar	where	the	Close	price	crosses	above	1350.00:

Plot1(Close);
If	Plot1	Cross	Above	1350.50	Then
Alert("Price	has	crossed	above	1350.00");

138

Crosses
Same	as	Cross

139

DownTo
Used	in	combination	with	For	to	form	a	loop	statement	that	will	execute	a	set	of
instructions	repeatedly	until	the	loop	count	reaches	the	specified	final	value.

DownTo	specifies	that	the	value	of	the	counter	variable	is	to	be	decreased	by	one	on
the	completion	of	each	loop.

For	more	information	see	For.

Usage

For	Counter=IValue	DownTo	FValue	Begin	I1;
I2;

End;

Where:	Counter	-	a	numerical	variable	used	store	the	loop	count
													IValue	-	a	numerical	expression	specifying	the	initial	counter	value
													FValue	-	a	numerical	expression	specifying	the	final	counter	value

Example

Add	the	high	prices	of	the	last	10	bars	to	the	HighPriceSum	variable:

For	BarBackNo=9	DownTo	0	Begin
HighPriceSum=HighPriceSum+High[BarBackNo];
End;

140

Else
Used	in	combination	with	If	and	Then	to	form	a	conditional	statement	that	executes
specific	instructions	if	a	logical	expression	is	false.

The	conditional	execution	statement	must	contain	both	If	and	Then	in	addition	to
Else.

For	more	information	see	If.

Usage

If	E	Then	I1	Else	I2

Where:	E	-	a	true/false	expression
													I	-	conditional	instructions

Example

If	UpTrend	is	true	then	buy	and	if	UpTrend	is	false	then	sell	short:

If	UpTrend	Then	Buy	Next	Bar	Market	Else	SellShort	Next	Bar	Market;

141

End
Used	in	combination	with	Begin	to	group	instructions	for	conditional	execution;	an
End	must	always	be	preceded	by	a	Begin.	Begin	and	End	can	be	used	with	Then,
Else,	For,	and	While	conditional	statements.

Only	the	last	instance	of	End	within	the	same	conditional	execution	statement	should
be	followed	by	a	semicolon	(;).

Usage

CS	Begin	I1;
I2;

I3;

End;

Where:	CS	-	conditional	statement
													I	-	conditional	instructions

Example

If	UpTrend	is	true	then	buy,	otherwise	sell	short:

If	UpTrend	Then	Begin
Buy	Next	Bar	Market;
End

Else	Begin

SellShort	Next	Bar	Market;
End;

142

False
A	logical	(Boolean)	value.	Logical	values	are	used	in	logical	(Boolean)
expressions	and	for	true/false	inputs.

Usage

False

Example

False	And	True			will	return	a	value	of	False

2=1		will	return	a	value	of	False	

Declare	LogicalVar	as	a	true/false	variable	with	the	initial	value	of	false:

Variable:LogicalVar(False);	

Declare	Overnight	as	a	true/false	input	with	the	default	value	of	false:

Input:Overnight(False);

143

For
Used	in	combination	with	To	or	DownTo	to	form	a	loop	statement	that	will	execute	a
set	of	instructions	repeatedly	until	the	loop	count	reaches	the	specified	final	value.

The	loop	statement	specifies	a	numerical	variable	that	holds	the	loop	count,	as	well
as	initial	and	final	counter	values.	To	specifies	that	the	value	of	the	counter	variable
is	to	be	increased	by	one	on	the	completion	of	each	loop,	while	DownTo	specifies
that	the	value	of	the	counter	variable	is	to	be	decreased	by	one	on	the	completion	of
each	loop.

The	use	of	Begin	and	End	statements	is	required	to	group	the	instructions	for
execution	within	the	loop;	a	Begin	must	always	be	followed	by	an	End.

Begin	should	not	be	followed	by	a	semicolon	(;),	code	lines	within	an	instruction
group	should	end	with	a	semicolon	(;),	and	End	should	be	followed	by	a	semicolon
(;).

Usage

For	Counter=IValue	To	FValue	Begin	I1;
I2;

End;

or:

For	Counter=IValue	DownTo	FValue	Begin
I1;

I2;

End;

Where:	Counter	-	a	numerical	variable	used	store	the	loop	count
													IValue	-	a	numerical	expression	specifying	the	initial	counter	value
													FValue	-	a	numerical	expression	specifying	the	final	counter	value

Example

Add	the	high	prices	of	the	last	10	bars	to	the	HighPriceSum	variable:

For	BarBackNo=0	To	9	Begin

144

HighPriceSum=HighPriceSum+High[BarBackNo];
End;

Add	the	high	prices	of	the	last	10	bars	to	the	HighPriceSum	variable:

For	BarBackNo=9	DownTo	0	Begin
HighPriceSum=HighPriceSum+High[BarBackNo];
End;

145

If
Used	in	combination	with	Then	to	form	a	conditional	statement	that	executes
specific	instructions	if	a	logical	expression	is	true,	and	with	Else	to	form	a
conditional	statement	that	executes	specific	instructions	if	a	logical	expression	is
false.

The	conditional	execution	statement	must	contain	both	If	and	Then;	Else	is
optional.

Begin	and	End	statements	are	used	to	group	instructions	for	conditional	execution;	a
Begin	must	always	be	followed	by	an	End.

Begin	should	not	be	followed	by	a	semicolon	(;),	code	lines	within	an	instruction
group	should	end	with	a	semicolon	(;),	and	only	the	last	instance	of	End	within	the
same	conditional	execution	statement	should	be	followed	by	a	semicolon	(;).

Usage

If	E	Then	I1	Else	I2

or:

If	E	Then	Begin	I1;
I2;

End

Else	Begin

I3;

I4;

End;

Where:	E	-	a	true/false	expression
											I	-	conditional	instructions

Example

If	UpTrend	is	false	then	sell:

If	UpTrend=False	Then	Sell	Next	Bar	Market;

If	UpTrend	is	true	then	buy,	otherwise	sell	short:

146

If	UpTrend	Then	Buy	Next	Bar	Market	Else	SellShort	Next	Bar	Market;

If	UpTrend	is	true	then	buy,	otherwise	sell	short:

If	UpTrend	Then	Begin
Buy	Next	Bar	Market;
End

Else	Begin

SellShort	Next	Bar	Market;
End;

147

Not
Used	in	True/False	statements:	negative

Example

Condition1	=	True;

Condition2	=	Not	Condition1;

Assigns	to	Condition2	value	opposite	to	Condition1.

148

Or
A	logical	(Boolean)	operator	that	returns	True	if	one	or	both	of	its	operands	are
true.	Logical	operators	are	used	in	logical	(Boolean)	expressions	that	operate	with
true/false	values.

Usage

E1	Or	E2

Where:	E	-	true/false	expressions

Example

2=1	Or	2>2				will	return	a	value	of	False

True	Or	False	Or	False			will	return	a	value	of	True

149

Over
Same	as	Above

150

switch
Part	of	switch-case	operator.

Usage

See	in	example

Example

switch	getplotcolor	(1)	begin	case	green:	
print("Indicator	in	green	zone	on	bar	",	currentbar);	
case	red:	
print("Indicator	in	red	zone	on	bar	",	currentbar);	
case	red:	
print("Indicator	is	neutral	on	bar	",	currentbar);	
end;

151

Then
Used	in	combination	with	If	to	form	a	conditional	statement	that	executes	specific
instructions	if	a	logical	expression	is	true.

For	more	information	see	If.

Usage

If	E	Then	I

Where:	E	-	a	true/false	expression
													I	-	conditional	instructions

Example

If	UpTrend	is	false	then	sell:

If	UpTrend=False	Then	Sell	Next	Bar	Market;

152

To
Used	in	combination	with	For	to	form	a	loop	statement	that	will	execute	a	set	of
instructions	repeatedly	until	the	loop	count	reaches	the	specified	final	value.

To	specifies	that	the	value	of	the	counter	variable	is	to	be	increased	by	one	on	the
completion	of	each	loop.

For	more	information	see	For.

Usage

For	Counter=IValue	To	FValue	Begin	I1;
I2;

End;

Where:	Counter	-	a	numerical	variable	used	store	the	loop	count
													IValue	-	a	numerical	expression	specifying	the	initial	counter	value
													FValue	-	a	numerical	expression	specifying	the	final	counter	value

Example

Add	the	high	prices	of	the	last	10	bars	to	the	HighPriceSum	variable:

For	BarBackNo=0	To	9	Begin
HighPriceSum=HighPriceSum+High[BarBackNo];
End;

153

True
A	logical	(Boolean)	value.	Logical	values	are	used	in	logical	(Boolean)
expressions	and	for	true/false	inputs.

Usage

True

Example

True	Or	False			will	return	a	value	of	True

2=2			will	return	a	value	of	True	

Declare	LogicalVar	as	a	true/false	variable	with	the	initial	value	of	true:

Variable:LogicalVar(True);	

Declare	Overnight	as	a	true/false	input	with	the	default	value	of	true:

Input:Overnight(True);

154

Under
Same	as	Below

155

While
Used	in	combination	with	Begin	and	End	to	form	a	conditional	loop	statement	that
will	execute	a	set	of	instructions	repeatedly	as	long	as	a	logical	expression	is	true.
If	the	logical	expression	is	not	true,	the	instructions	will	not	be	executed.

Begin	and	End	statements	are	used	to	group	instructions	for	conditional	execution;	a
Begin	must	always	be	followed	by	an	End.

Begin	should	not	be	followed	by	a	semicolon	(;),	code	lines	within	an	instruction
group	should	end	with	a	semicolon	(;),	and	End	should	be	followed	by	a	semicolon
(;).

Usage

While	E	Begin	I1;
I2;

I3;

End;

Where:	E	-	a	true/false	expression
													I	-	conditional	instructions

Example

Add	the	high	prices	of	the	last	10	bars	to	the	HighPriceSum	variable:

BarBackNo=0;
While	BarBackNo<10	Begin
HighPriceSum=HighPriceSum+High[BarBackNo];
BarBackNo=BarBackNo+1;
End;

156

AUD

Constant	used	to	designate	the	currency	"Australian	Dollar".

Usage

AUD

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"Australian
Dollar".

condition1	=	SymbolCurrencyCode	=	AUD;

157

CAD

Constant	used	to	designate	the	currency	"Canadian	Dollar".

Usage

CAD

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"Canadian	Dollar".

condition1	=	SymbolCurrencyCode	=	CAD;

158

CHF

Constant	used	to	designate	the	currency	"Swiss	Franc".

Usage

CHF

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"Swiss	Franc".

condition1	=	SymbolCurrencyCode	=	CHF;

159

Convert_Currency

Returns	the	SrcMoney	sum,	set	in	the	SrcCurrency	currency,	in	the	DstCurrency
currency	using	the	cross-rate	at	the	DateTime	date	and	time.

Usage

Convert_Currency(DateTime,	SrcCurrency,	DstCurrency,	SrcMoney);

Where:

DateTime	-	date	and	time	set	in	the	DateTime	format

SrcCurrency	-	initial	currency	used	for	conversion

DstCurrency	-	currency	to	which	the	sum	will	be	converted	to

SrcMoney	-	funds	in	initial	currency	(SrcCurrency)	to	be	converted	to	DstCurrency

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Convert_Currency(39448.25000000,	GBP,	USD,	12.34);
will	return	24.48,	which	means	that:	on	1/1/2008:	12.34	GBP	was	equal	to	24.48
USD.

160

EUR

Constant	used	to	designate	the	currency	"Euro".

Usage

EUR

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"Euro".

condition1	=	SymbolCurrencyCode	=	EUR;

161

GBP

Constant	used	to	designate	the	currency	"British	Pound".

Usage

GBP

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"British	Pound".

condition1	=	SymbolCurrencyCode	=	GBP;

162

HKD

Constant	used	to	designate	the	currency	"Hong	Kong	Dollar".

Usage

HKD

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"Hong	Kong
Dollar".

condition1	=	SymbolCurrencyCode	=	HKD;

163

JPY

Constant	used	to	designate	the	currency	"Japanese	Yen".

Usage

JPY

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"Japanese	Yen".

condition1	=	SymbolCurrencyCode	=	JPY;

164

NOK

Constant	used	to	designate	the	currency	"Norwegian	Krone".

Usage

NOK

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"Norwegian
Krone".

condition1	=	SymbolCurrencyCode	=	NOK;

165

None

Constant	used	to	designate	that	currency	was	not	indicated.

Usage

None

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	not	indicated	in
QuoteManager	settings.

condition1	=	SymbolCurrencyCode	=	None;

166

NZD

Constant	used	to	designate	the	currency	"New	Zealand	Dollar".

Usage

NZD

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"New	Zealand
Dollar".

condition1	=	SymbolCurrencyCode	=	NZD;

167

Portfolio_CurrencyCode

Returns	currency	code	from	Portfolio	settings	(View	->	Portfolio	Settings)

Usage

Portfolio_CurrencyCode

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	portfolio	account	used	for	calculation	is	US	Dollar.

condition1	=	Portfolio_CurrencyCode	=	USD;

168

SEK

Constant	used	to	designate	the	currency	"Swedish	Krona".

Usage

SEK

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"Swedish	Krona".

condition1	=	SymbolCurrencyCode	=	SEK;

169

SGD

Constant	used	to	designate	the	currency	"Singapore	Dollar".

Usage

SGD

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"Singapore
Dollar".

condition1	=	SymbolCurrencyCode	=	SGD;

170

SymbolCurrencyCode

Returns	currency	code	from	Quote	Manager	symbol	settings	(Edit	Symbol...	->
Settings	->	Currency)

Usage

SymbolCurrencyCode

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	calculation	is	US	Dollar.

condition1	=	SymbolCurrencyCode	=	USD;

171

TRY_

Constant	used	to	designate	the	currency	"Turkish	Lira".

Usage

TRY_

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"Turkish	Lira".

condition1	=	SymbolCurrencyCode	=	TRY_;

172

USD

Constant	used	to	designate	the	currency	"US	Dollar".

Usage

USD

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"US	Dollar".

condition1	=	SymbolCurrencyCode	=	USD;

173

ZAR

Constant	used	to	designate	the	currency	"South	African	Rand".

Usage

ZAR

Notes

The	base	14	currencies	can	be	designated	by	constants.

Example

Checks	if	the	currency	of	the	symbol	used	for	the	calculation	is	"South	African
Rand".

condition1	=	SymbolCurrencyCode	=	ZAR;

174

Ago
Used	in	combination	with	Bar	or	Bars	and	a	numerical	expression	to	reference	the
bar	a	specified	number	of	bars	back	from	the	current	bar.

Bars	Ago	can	also	be	specified	by	using	the	bar	offset	notation	that	consists	of	a
numerical	expression	enclosed	in	square	brackets.

Usage

N	Bars	Ago

or:

[N]	

Where:	N	-	a	numerical	expression	specifying	the	number	of	bars	back	to	reference

Example

Plot	the	closing	price	of	the	previous	bar:

Plot1(Close	Of	1	Bar	Ago,	"Previous	bar's	close");	

Plot	the	closing	price	of	two	bars	ago:

Plot1(Close[2],	"Close	2	bars	ago");

175

Bar
Used	in	combination	with	This,	Next,	or	Ago	to	reference	a	specific	bar.

Usage

Bar

Example

Close	Of	1	Bar	Ago		will	return	the	closing	price	of	the	previous	bar	

Buy	a	user-set	number	of	shares	on	close	of	this	bar:

Buy	This	Bar	On	Close;	

Buy	a	user-set	number	of	shares	on	open	of	next	bar:

Buy	Next	Bar	On	Open;

176

BarInterval

Returns	a	numerical	value,	indicating	the	number	of	resolution	units	(bar	interval)
of	the	data	series	that	the	study	is	applied	to.

Returns	the	number	of	Ticks,	Contracts,	Points,	Changes,	Seconds,	Minutes,	Hours,
Days,	Weeks,	Months,	Quarters,	or	Years,	depending	on	the	chart	resolution;	a
value	of	5	will	be	returned	for	a	5-second	as	well	as	for	a	5-tick	chart.

Usage

BarInterval

Example

Assign	a	value,	indicating	the	number	of	resolution	units	(bar	interval)	of	the	data
series	that	the	study	is	applied	to,	to	Value1	variable:

Value1=BarInterval;	

177

Bars
Same	as	Bar

178

BarStatus
Returns	a	numerical	value,	indicating	the	status	of	the	most	recent	tick	in	the	current
bar	of	the	specified	data	series.

A	value	of	0	indicates	that	the	tick	is	the	opening	tick	of	the	bar,	1	indicates	that	the
tick	is	within	the	bar,	and	2	indicates	that	the	tick	is	the	closing	tick	of	the	bar.

Usage

BarStatus(DataNum)

Where:	DataNum	-	a	numerical	expression	specifying	the	data	number	of	the	series

If	DataNum		is	not	specified,	a	value	for	the	current	data	series	will	be	returned.

Example

BarStatus(1)		will	return	a	value	of	2	if	the	current	tick	in	the	data	series	with	the
data	number	1	is	the	closing	tick	of	a	bar

179

BarType

Returns	a	numerical	value,	indicating	the	resolution	units	of	the	data	series	that	the
study	is	applied	to.

Usage

BarType	
The	following	values	are	returned	for	each	type	of	resolution	units:

		0		Ticks	(Ticks	&	Contracts)
		1		Intra-Day	(Seconds,	Minutes,	&	Hours)
		2		Days
		3		Weeks
		4		Months,	Quarters,	&	Years
		5		Points,	Changes,	Point	&	Figure
		6		(Reserved	for	future	use)
		7		(Reserved	for	future	use)
		8		Kagi
		9		(Reserved	for	future	use)
		10		Line	Break
		11		(Reserved	for	future	use)
		12		(Reserved	for	future	use)
		13		Renko
		256	-	Heikin	Ashi

Example

Assign	a	value,	indicating	the	resolution	units	of	the	data	series	that	the	study	is
applied	to,	to	Value1	variable:

Value1=BarType;

180

BarType_ex

An	extended	version	of	BarType.	Indicates	the	resolution	units	more	specifically.

Returns	a	numerical	value,	indicating	the	resolution	units	of	the	data	series	that	the
study	is	applied	to.

Usage

BarType_ex	
The	following	values	are	returned	for	each	type	of	resolution	units:

		1		Ticks
		2		Minutes
		3		Hours
		4		Days
		5		Weeks
		6		Months
		7		Years
		8		Volume
		9		Seconds
10		Quarters
11		Points
12		Change
13		Points	(Original)
14	-	Point	&	Figure
15	-	Kagi
16	-	Line	Break
17	-	Renko
18	-	Heikin	Ashi

Example

Assign	a	value,	indicating	the	resolution	units	of	the	data	series	that	the	study	is
applied	to,	to	Value1	variable:

Value1=BarType_ex;

181

182

BigPointValue
Returns	a	numerical	value,	indicating	the	currency	value	of	a	single	whole	unit
price	change	for	the	data	series	that	the	study	is	applied	to.

Usage

BigPointValue

Notes

BigPointValue	=	PointValue	×	PriceScale

Example

BigPointValue		will	return	1	for	Google

BigPointValue		will	return	50	for	E-mini	S&P;	500

183

BoxSize

Returns	the	price-based	interval	setting	associated	with	the	specified	price-based
chart	type	an	indicator	or	signal	is	applied	to.

This	value	is	set	in	the	Chart	Type	section	of	the	Settings	tab	within	the	Format
Instrument	dialog	for	a	chart.

Usage

BoxSize

Parameters

Chart	Type Value	Returned
Point	&	Figure Box	Size	value
Point Point	value
Renko Box	Size	value

Example

Boxsize	will	return	a	value	of	3	for	Renko	chart	with	the	Box	Size	equal	3.

Boxsize	will	return	a	value	of	0	for	Kagi	or	regular	resolutions	charts.

184

ms-its:MultiCharts.chm::/files/02_MC/22-02021_FCh_SymSet_ChSymbol.html

C
Same	as	Close

185

Call

Constant	used	to	designate	the	Call	option	instrument.

Usage

Call

Notes

The	Put	options	could	be	designated	by	the	Put	constant.

Example

Checks	if	the	symbol	used	for	the	calculation	is	a	Call	option.

condition1	=	OptionType	=	Call;

186

Category

Returns	a	numerical	value,	indicating	the	category	(financial	instrument	type)	of	the
symbol	that	study	is	applied	to.

Usage

Category

The	following	values	are	returned	for	each	category:

		0		Future
		1		Future	Option
		2		Stock
		3		Stock	Option
		4		Index
		5		Currency	Option
		6		Mutual	Fund
		7		Money	Market	Fund
		8		Index	Option
		9		Cash
10		Bond
11		Spread
12		Forex
14		Composite

Example

Assign	a	value,	indicating	the	type	of	symbol	that	the	study	is	applied	to,	to	Value1
variable:

Value1=Category;

187

Close
Returns	the	closing	price.

Usage

Close

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Example

Plot	the	closing	price	of	the	current	bar:

Plot1(Close,"Close");	

Plot	the	closing	price	of	the	previous	bar:

Plot1(Close	Of	1	Bar	Ago,	"Previous	bar's	close");	

Plot	the	closing	price	of	two	bars	ago:

Plot1(Close[2],	"Close	2	bars	ago");

188

CurrentBar
Returns	the	number	of	the	current	bar.

Each	bar,	subsequent	to	the	initial	number	of	bars	specified	by	the	Maximum	Bars
Back	setting,	is	assigned	a	sequential	number;	the	initial	bars	specified	by	the
setting	are	not	numbered.

For	example,	if	Maximum	Bars	Back	is	set	to	20,	the	21st	bar	will	be	assigned	a
number	of	1.

Usage

CurrentBar

Example

CurrentBar	will	return	the	number	of	the	current	bar

189

D
Same	as	Date

190

DailyLimit
Retained	for	backward	compatibility.

191

Data
Used	to	specify	a	particular	data	series	in	a	multi-symbol	chart;	each	data	series	in
a	multi-symbol	chart	has	a	unique	Data	Number.

Usage

DataN

Where:	N	-	the	Data	Number	of	the	data	series

Or:

Data(N)

Where:	N	-	a	numerical	expression	specifying	the	Data	Number	of	the	data	series

Example

High	Of	Data2		will	return	the	high	price	of	a	bar	in	the	data	series	with	the	Data
Number	of	2

High	Of	Data(2)	will	return	the	high	price	of	a	bar	in	the	data	series	with	the	Data
Number	of	2

192

DataCompression
Same	as	BarType

193

Date

Returns	a	numerical	value	indicating	the	closing	date	of	a	bar.	The	date	is	indicated
in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since	1900,	MM	is	the
month,	and	dd	is	the	day	of	the	month.

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Usage

Date

Example

Date		will	return	a	value	of	1071030	for	October	30th,	2007

Date		will	return	a	value	of	990402	for	April	2th,	1999

194

DateTime

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

DateTime	is	a	double-precision	decimal	value.	It	allows	accessing	millisecond	time
stamps	of	the	bar.

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Usage

DateTime

Example

DateTime				will	return	41422.74	for	5/28/2013	08:41:11.813

195

DateTime	bar	update

Returns	time	of	the	last	update	of	the	current	bar	if	Bar	Magnifier	mode	is	on.

If	Bar	Magnifier	mode	is	off,	returns	the	time	of	the	current	bar	(as	the	Time
property).

Usage

datetime_bar_update(data_stream)

Example

Bar	Magnifier	mode	is	on.	Time	and	date	of	the	last	update	of	the	current	bar	are
29.04.2013	10:53:59.154

print(datetime_bar_update:15:8)				will	return	41393.45415687.

print(datetimetostring_ms(datetime_bar_update))				will	return	"29.04.2013
10:53:59.154".

196

Day
Retained	for	backward	compatibility;	replaced	with	Bar.

197

Days
Retained	for	backward	compatibility;	replaced	with	Bar.

198

DownTicks
Returns	the	total	number	of	Down	ticks	for	the	current	bar	if	Build	Volume	On	is
set	to	Tick	Count.

Returns	the	total	Down	volume	for	the	current	bar	if	Build	Volume	On	is	set	to
Trade	Volume.

A	down	tick	is	a	tick	with	the	price	lower	then	the	preceding	tick,	and	down	volume
is	the	volume	traded	on	down	ticks.	

With	Build	Volume	On	is	set	to	Tick	Count:

			-	the	value	of	1	will	be	returned	for	1-tick	charts	
			-	the	total	number	of	Down	ticks	in	the	current	bar	will	be	returned	for	multi-tick,
volume,	and	time-based	charts	

With	Build	Volume	On	is	set	to	Trade	Volume:

			-	the	Down	volume	of	the	current	tick	will	be	returned	for	1-tick	charts
			-	the	total	Down	volume	of	the	current	bar	will	be	returned	for	multi-tick,
volume,	and	time-based	charts

Please	note	that	most	data	feeds	provide	only	a	limited	history	of	tick	and	volume
data;	storing	real-time	feed	data	will	ensure	the	availability	of	historical	tick	and
volume	data.

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Usage

DownTicks

Example

199

Plot	the	number	of	Down	ticks	in	the	current	bar	(Build	Volume	On	is	set	to	Tick
Count):

Plot1(DownTicks,"Down	Ticks");	

Plot	the	Down	volume	of	the	current	bar	(Build	Volume	On	is	set	to	Trade
Volume):

Plot1(DownTicks,"Down	Volume");

200

ExpirationDate

Returns	a	numerical	value,	indicating	the	expiration	date	of	the	financial	instrument
the	study	is	applied	to.	The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY
is	the	number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

For	example,	the	value	returned	for	the	date	of	October	30th,	2008	will	be	1081030,
and	for	April	2nd,	1999	will	be	990402.

Usage

ExpirationDate

A	valid	expiration	date	will	be	returned	for	futures	or	options	only.

Example

ExpirationDate		will	return	a	value	of	1081030	for	October	30th,	2008

ExpirationDate		will	return	a	value	of	990402	for	April	2nd,	1999

201

ExpirationDateFromVendor

Returns	a	numerical	value,	indicating	the	expiration	date	of	the	financial	instrument
the	study	is	applied	to.	The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY
is	the	number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

For	example,	the	value	returned	for	the	date	of	October	30th,	2008	will	be	1081030,
and	for	April	2nd,	1999	will	be	990402.

Usage

ExpirationDateFromVendor

A	valid	expiration	date	will	be	returned	for	futures	or	options	only.

Example

ExpirationDateFromVendor		will	return	a	value	of	1081030	for	October	30th,
2008

ExpirationDateFromVendor		will	return	a	value	of	990402	for	April	2nd,	1999

202

GetExchangeName
Returns	a	string	expression	containing	the	exchange	name	for	the	symbol	that	the
study	is	applied	to.

Usage

GetExchangeName

Example

GetExchangeName		will	return	"NASD"	for	Google

GetExchangeName		will	return	"CME"	for	E-mini	S&P;	500

203

GetRTSymbolName
Returns	a	string	expression	containing	the	name	of	the	real-time	symbol	that	the
study	is	applied	to	in	case	the	merging	option	is	enabled.	If	the	merging	option	is
disabled	returns	the	same	value	as	the	Name	property.	In	case	of	a	custom	futures
instrument	the	name	of	the	last	contract	is	returned.

Usage

GetRTSymbolName

Example

GetRTSymbolName		will	return	"GOOG"	for	Google	if	the	merging	option	is
enabled	and	Google	is	configured	as	the	real-time	instrument.

204

GetSymbolName
Returns	a	string	expression	containing	the	name	of	the	symbol	that	the	study	is
applied	to.

Usage

GetSymbolName

Example

GetSymbolName		will	return	"GOOG"	for	Google

205

H
Same	as	High

206

High
Returns	the	high	price.

Usage

High

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Example

Plot	the	high	price	of	the	current	bar:

Plot1(High,"High");	

Plot	the	high	price	of	the	previous	bar:

Plot1(High	Of	1	Bar	Ago,"Previous	bar's	high");	

Plot	the	high	price	of	two	bars	ago:

Plot1(High[2],"High	2	Bars	ago");

207

I
Same	as	OpenInt

208

IntervalType

Returns	a	numerical	value,	indicating	the	resolution	intervals	of	the	data	series	that
the	study	is	applied	to.

Usage

IntervalType

The	following	values	are	returned	for	each	type	of	resolution	units:

	0			-	Ticks	(Ticks	&	Contracts)
	1			-	Intra-Day	(Seconds,	Minutes,	&	Hours)
	2			-	Days
	3			-	Weeks
	4			-	Months,	Quarters,	Years
	5			-	Points,	Changes
	0	-	4	-	Point	&	Figure
	0	-	4	-	Kagi
	0	-	4	-	Line	Break
	0			-	Renko

Example

To	assign	a	value,	indicating	the	resolution	units	of	the	data	series	the	study	is
applied	to,	to	Value1	variable:

Value1	=	IntervalType;

209

IntervalType_ex

An	extended	version	of	IntervalType.

Indicates	the	resolution	intervals	more	specifically.

Returns	a	numerical	value,	indicating	the	resolution	intervals	of	the	data	series	that
the	study	is	applied	to.

Usage

IntervalType_ex

The	following	values	are	returned	for	each	type	of	resolution	units:

	1				-	Ticks	
	2				-	Minutes	
	3				-	Hours	
	4				-	Days	
	5				-	Weeks	
	6				-	Months	
	7				-	Years	
	8				-	Volume	
	9				-	Seconds	
	10		-	Quarters	
	11		-	Points	
	12		-	Change	
	13		-	Points	(original)	
	1	-	7,	9,	10	-	Point	&	Figure	
	1	-	7,	9,	10	-	Kagi	
	1	-	7,	9,	10	-	Line	Break	
	1				-	Renko

Example

To	assign	a	value,	indicating	the	resolution	units	of	the	data	series	the	study	is
applied	to,	to	Value1	variable:

210

Value1	=	IntervalType_ex;

211

L
Same	as	Low

212

Low
Returns	the	low	price.

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Usage

Low

Example

Plot	the	low	price	of	the	current	bar:

Plot1(Low,"Low");	

Plot	the	low	price	of	the	previous	bar:

Plot1(Low	Of	1	Bar	Ago,"Previous	bar's	low");	

Plot	the	low	price	of	two	bars	ago:

Plot1(Low[2],"Low	2	bars	ago");

213

MinMove
Returns	a	numerical	value,	indicating	the	minimum	fractional	unit	price	change	for
the	data	series	that	the	study	is	applied	to.

Usage

MinMove

Example

MinMove		will	return	1	for	Google

MinMove		will	return	25	for	E-mini	S&P;	500

MinMove*PointValue		will	return	the	currency	value,	corresponding	to	the
minimum	price	move	of	a	share	or	contract

214

Next
Used	in	combination	with	Bar	to	reference	the	next	bar.

Usage

Next	Bar

Example

Buy	a	user-set	number	of	shares	at	Market	price	on	open	of	next	bar:

Buy	Next	Bar	At	Market;

215

O
Same	as	Open

216

Open
Returns	a	numerical	value	indicating	the	open	open	price.

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Usage

Open

Example

Plot	the	open	price	of	the	current	bar:

Plot1(Open,"Open");	

Plot	the	open	price	of	the	previous	bar:

Plot1(Open	Of	1	Bar	Ago,	"Previous	bar's	open");	

Plot	the	open	price	of	two	bars	ago:

Plot1(Open[2],"Open	2	bars	ago");

217

OpenInt
Returns	the	open	interest	of	the	current	bar	for	time-based	charts	with	resolutions
of	1	day	or	more.

For	tick	and	volume-based	charts	and	for	time-based	charts	with	resolutions	of	24
hours	or	less,	OpenInt	returns:

-	the	volume	traded	on	Down	ticks	will	be	returned	if	Build	Volume	On	is	set	to
Trade	Volume
-	the	number	of	Down	ticks	in	the	current	bar	will	be	returned	if	Build	Volume	On
is	set	to	Tick	Count

Usage

OpenInt

Notes

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.	

OpenInt	is	supported	for	time-based	charts	with	resolutions	of	1	day	or	more.	

Most	data	feeds	provide	only	a	limited	history	of	volume	and	tick	data;	storing
real-time	feed	data	will	ensure	the	availability	of	historical	volume	and	tick	data.

Example

Plot	the	open	interest	of	the	current	bar:

Plot1(OpenInt,"Open	interest");

Plot	the	open	interest	of	the	previous	bar:

Plot1(OpenInt	of	1	Bar	Ago,"Previous	bar's	open	interest");

218

Plot	the	open	interest	of	two	bars	ago:

Plot1(OpenInt[2],"Open	interest	2	bars	ago");

219

OptionType
Returns	the	numerical	value,	indicating	the	Put	or	Call	value	for	the	data	series
that	the	study	is	applied	to.	If	the	instrument	is	not	an	option	contract	the	keyword
returns	0.

Usage

OptionType

Example

OptionType		will	return	0	for	Google,	since	it	is	not	an	option	instrument

OptionType		will	return	the	value	of	the	Put	constant	for	any	Put	option,	and	the
value	of	the	Call	constant	for	any	Call	option

220

Point
Returns	a	decimal	numerical	value,	equivalent	to	a	single	fractional	price	unit	for
the	data	series	that	the	study	is	applied	to.

Usage

Point

Notes

Point	=	1/PriceScale

Example

1	Point		will	return	0.01	for	Google

8	Point		will	return	0.08	for	E-mini	S&P;	500

8	Point		will	return	0.25	for	T-Bond	Futures

221

Points
Same	as	Point

222

PointValue
Returns	a	numerical	value,	indicating	the	currency	value	of	a	single	fractional	unit
price	change	for	the	data	series	that	the	study	is	applied	to.

Usage

PointValue

Notes

PointValue	=	BigPointValue/PriceScale

Example

PointValue		will	return	0.01	for	Google

PointValue		will	return	0.50	for	E-mini	S&P;	500

223

PriceScale
Returns	a	numerical	value,	indicating	the	fractional	unit	equivalent	of	a	single
whole	unit	price	change	for	the	data	series	that	the	study	is	applied	to.

Usage

PriceScale

Notes

PriceScale	=	BigPointValue/PointValue

Example

PriceScale		will	return	100	for	Google

PriceScale		will	return	32	for	T-Bond	Futures

224

Put

Constant	used	to	designate	the	Put	option	instrument.

Usage

Put

Notes

The	Call	options	could	be	designated	by	the	Call	constant.

Example

Checks	if	the	symbol	used	for	the	calculation	is	a	Put	option.

condition1	=	OptionType	=	Put;

225

RevSize

Returns	the	Reversal	of	a	Point	&	Figure	chart,	the	Reversal	of	a	Kagi	chart,	or	the
number	of	Line	Breaks	in	a	Line	Break	chart.

This	value	is	set	in	the	Chart	Type	section	of	the	Settings	tab	within	the	Format
Instrument	dialog	for	a	chart.

Usage

Notes

Example

RevSize	returns	2	if	the	reversal	size	of	a	P&F;	chart	is	set	to	2.

RevSize	returns	5	if	the	number	of	line	breaks	for	a	Line	Break	chart	is	set	to	5.

RevSize	returns	4	if	the	reversal	size	of	a	Kagi	chart	is	set	to	4%.

226

ms-its:MultiCharts.chm::/files/02_MC/22-02021_FCh_SymSet_ChSymbol.html

ScrollToBar
Centers	the	chart	on	the	specified	bar.

Usage

ScrollToBar	(int	DataN,	int	BarN)

Where:	DataN	-	data	series	number

													BarN	-	bar	number

Example

ScrollToBar(2,	98);	

Will	center	the	chart	on	the	98th	bar	of	the	second	data	series.

227

SessionLastBar

Returns	a	logical	value	indicating	whether	the	current	bar	is	the	last	bar	of	the
session;	returns	a	value	of	True	if	the	current	bar	is	the	last	bar	of	the	session,	and	a
value	of	False	if	the	current	bar	is	not	the	last	bar	of	the	session.

Usage

SessionLastBar

Example

Assign	a	true/false	value,	indicating	whether	the	current	bar	is	the	last	bar	on	the
chart,	to	LastBar	variable:

Variable:LastBar(False);	
LastBar=SessionLastBar;

228

Strike
Returns	the	numerical	value,	indicating	the	strike	price	for	the	data	series	that	the
study	is	applied	to.	If	the	instrument	is	not	an	option	contract	the	keyword	returns	0.

Usage

Strike

Example

Strike		will	return	0	for	Google,	since	it	is	not	an	option	instrument

Strike		will	return	65	for	the	January	2012	Put	option	for	Johnson	&	Johnson
(JNJ)	at	the	strike	price	is	$65	(JNJ120121P00065000)

229

Symbol_Close

Returns	the	closing	price	of	the	bar.

Usage

Symbol_Close

Note

The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Plot	the	closing	price	of	the	current	bar:

Plot1(Symbol_Close,	"Close");

Plot	the	closing	price	of	the	previous	bar:

Plot1(Symbol_Close	of	1	Bar	Ago,	"Previous	Bar's	Close");

Plot	the	closing	price	of	two	bars	ago:

Plot1(Symbol_Close	[2],	"Close	2	bars	ago");

230

Symbol_CurrentBar

Returns	a	numerical	value	indicating	the	number	of	the	current	bar	plus	Maximum
Bars	Back	setting	for	the	study.

Usage

Symbol_CurrentBar

Note

Each	bar,	subsequent	to	the	initial	number	of	bars	specified	by	the	Maximum	Bars
Back	setting,	is	assigned	a	sequential	number;	the	initial	bars	specified	by	the
setting	are	not	numbered.

For	example,	if	Maximum	Bars	Back	is	set	to	20,	the	21st	bar	will	be	assigned	a
number	of	1.

Example

Symbol_CurrentBar

Will	return	the	number	of	the	current	bar	plus	Maximum	Bars	Back	setting	for	the
study.

231

Symbol_Date

Returns	a	numerical	value	indicating	the	closing	date	of	a	bar.	The	date	is	indicated
in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since	1900,	MM	is	the
month,	and	dd	is	the	day	of	the	month.

Usage

Symbol_Date

Note

The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Symbol_Date	will	return	a	value	of	1071030	for	October	30th,	2007

Symbol_Date	will	return	a	value	of	990402	for	April	2th,	1999

232

Symbol_DownTicks

Returns	the	total	number	of	Down	ticks	for	the	current	bar	if	Build	Volume	On	is
set	to	Tick	Count.

Returns	the	total	Down	volume	for	the	current	bar	if	Build	Volume	On	is	set	to
Trade	Volume.

A	down	tick	is	a	tick	with	the	price	lower	than	the	preceding	tick,	and	down	volume
is	the	volume	traded	on	down	ticks.

With	Build	Volume	On	is	set	to	Tick	Count:

				-	the	value	of	1	will	be	returned	for	1-tick	charts	
				-	the	total	number	of	Down	ticks	in	the	current	bar	will	be	returned	for	multi-
tick,	volume,	and	time-based	charts

With	Build	Volume	On	is	set	to	Trade	Volume:

				-	the	Down	volume	of	the	current	tick	will	be	returned	for	1-tick	charts	
				-	the	total	Down	volume	of	the	current	bar	will	be	returned	for	multi-tick,
volume,	and	time-based	charts

Usage

Symbol_DownTicks

Note

Most	data	feeds	provide	only	a	limited	history	of	tick	and	volume	data;	storing
real-time	feed	data	will	ensure	the	availability	of	historical	tick	and	volume
data
The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

233

Plot	the	number	of	Down	ticks	in	the	current	bar	(Build	Volume	On	is	set	to	Tick
Count):

Plot1(Symbol_DownTicks,	"Down	Ticks");

Plot	the	Down	volume	of	the	current	bar	(Build	Volume	On	is	set	to	Trade
Volume):

Plot1(Symbol_DownTicks,	"Down	Volume");

234

Symbol_High

Returns	the	high	price	of	the	bar

Usage

Symbol_High

Note

The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Plot	the	high	price	of	the	current	bar:

Plot1(Symbol_High,	"High");

Plot	the	high	price	of	the	previous	bar:

Plot1(Symbol_High	of	1	Bar	Ago,	"Previous	Bar's	high");

Plot	the	high	price	of	two	bars	ago:

Plot1(Symbol_High	[2],	"High	2	Bars	Ago");

235

Symbol_Length

Returns	a	numerical	value	indicating	the	actual	number	of	bars	of	a	data	series	on
chart.

Usage

Symbol_Length

Note

If	the	series	is	not	updating	in	real-time	(no	new	bars	appear),	the	keyword	returns
the	same	value	on	each	calculation.	If	the	chart	updates	in	real-time	the	keyword
returns	the	number	of	bars	available	by	the	moment	script	references	the	keyword.
It	means	that	the	keyword	possibly	can	return	different	values	even	during
calculation	within	the	same	bar.

Example

Plot1	(Symbol_Length,	"Length	of	series");

Plots	a	value	of	500	if	the	number	of	bars	of	data	series	is	500	and	there	is	no
new	bars	appear
Plots	a	value	of	501	if	the	number	of	bars	of	data	series	becomes	501	because
new	bar	appeared

236

Symbol_Low

Returns	the	low	price	of	the	bar

Usage

Symbol_Low

Note

The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Plot	the	low	price	of	the	current	bar

Plot1	(Symbol_Low,	"Low");

Plot	the	low	price	of	the	previous	bar:

Plot1	(Symbol_Low	of	1	Bar	Ago,	"Previous	Bar's	low");

Plot	the	low	price	of	two	bars	ago:

Plot1	(Symbol_Low	[2],	"Low	2	bars	ago");

237

Symbol_Open

Returns	a	numerical	value	indicating	the	open	price	of	the	bar.

Usage

Symbol_Open

Note

The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Plot	the	open	price	of	the	current	bar:

Plot1(Symbol_Open,	"Open");

Plot	the	open	price	of	the	previous	bar:

Plot1(Symbol_Open	of	1	Bar	Ago,	"Previous	bar's	open");

Plot	the	open	price	of	two	bars	ago:

Plot1(Symbol_Open	[2],	"Open	2	bars	ago");

238

Symbol_OpenInt

Returns	the	open	interest	of	the	current	bar	for	tick	and	volume-based	charts,	and
for	time-based	charts	with	resolutions	of	24	hours	or	less:

			-	the	volume	traded	on	Down	ticks	will	be	returned	if	Build	Volume	On	is	set	to
Trade	Volume	
			-	the	number	of	Down	ticks	in	the	current	bar	will	be	returned	if	Build	Volume
On	is	set	to	Tick	Count

OpenInt	is	supported	for	time-based	charts	with	resolutions	of	1	day	or	more.

Usage

Symbol_OpenInt

Note

Most	data	feeds	provide	only	a	limited	history	of	volume	and	tick	data;	storing
real-time	feed	data	will	ensure	the	availability	of	historical	volume	and	tick
data.
The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Plot	the	open	interest	of	the	current	bar:

Plot1	(Symbol_OpenInt,	"Open	Interest");

Plot	the	open	interest	of	the	previous	bar:

Plot1	(Symbol_OpenInt	of	1	Bar	Ago,	"Previous	Bar's	Open	Interest");

Plot	the	open	interest	of	two	bars	ago:

Plot1	(Symbol_OpenInt	[2],	"Open	Interest	2	bars	ago");

239

240

Symbol_TickID
This	keyword	can	be	used	to	distinguish	between	the	bars	with	the	same	date	and
time	stamps.

For	tick	and	volume-based	charts	returns	the	tick	index	within	a	second.	For
resolutions	higher	than	1	Tick	returns	the	index	of	the	last	tick	within	the	bar.

For	time-based	charts	with	resolutions	of	1	sec	or	more	not	supported.	Returns	0.

Realtime	ticks	stored	in	the	data	base	are	being	assigned	the	last	31	bit	-	the
identifier	of	realtime	affiliation.	In	order	to	get	the	Symbol_TickID	value	without
realtime	identifier	one	needs	to	calculate	the	remainder	from	Symbol_TickID	value
division	by	2147483648.

value1=Mod(Symbol_TickID,	2147483648);

Usage

Symbol_TickID

Note

The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Plots	the	tick	index	(TickID)	of	the	last	tick	within	the	current	bar:

Plot1(Symbol_TickID,"SymTickID");

241

Symbol_Ticks

Returns	the	total	number	of	ticks	for	the	current	bar	if	Build	Volume	On	is	set	to
Tick	Count.

Returns	the	total	volume	for	the	current	bar	if	Build	Volume	On	is	set	to	Trade
Volume.

With	Build	Volume	On	is	set	to	Tick	Count:

				-	the	value	of	1	will	be	returned	for	1-tick	charts	
				-	the	total	number	of	ticks	in	the	current	bar	will	be	returned	for	multi-tick,
volume,	and	time-based	charts

With	Build	Volume	On	is	set	to	Trade	Volume:

				-	the	volume	of	the	current	tick	will	be	returned	for	1-tick	charts	
				-	the	total	volume	of	the	current	bar	will	be	returned	for	multi-tick,	volume,	and
time-based	charts

Usage

Symbol_Ticks

Note

Most	data	feeds	provide	only	a	limited	history	of	tick	and	volume	data;	storing
real-time	feed	data	will	ensure	the	availability	of	historical	tick	and	volume
data
The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Plot	the	number	of	ticks	in	the	current	bar	(Build	Volume	On	is	set	to	Tick	Count):

Plot1	(Symbol_Ticks,	"Ticks");

242

Plot	the	volume	of	the	current	bar	(Build	Volume	On	is	set	to	Trade	Volume):

Plot1	(Symbol_Ticks,	"Volume");

243

Symbol_Time

Returns	a	numerical	value	indicating	the	closing	time	of	the	current	bar.	The	time	is
indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

Symbol_Time

Note

The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Symbol_Time	will	return	a	value	of	1015	for	10:15	AM

Symbol_Time	will	return	a	value	of	1545	for	3:45	PM

244

Symbol_Time_S

Returns	a	numerical	value	indicating	the	closing	time,	including	seconds,	of	the
current	bar.

The	time	is	indicated	in	the	24-hour	HHmmss	format,	where	130000	=	1:00:00	PM

Usage

Symbol_Time_S

Note

The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Symbol_Time_S	will	return	a	value	of	101525	for	10:15:25	AM

Symbol_Time_S	will	return	a	value	of	154500	for	3:45:00	PM

245

Symbol_UpTicks

Returns	the	total	number	of	Up	ticks	for	the	current	bar	if	Build	Volume	On	is	set	to
Tick	Count.

Returns	the	total	Up	volume	for	the	current	bar	if	Build	Volume	On	is	set	to	Trade
Volume.

An	up	tick	is	a	tick	with	the	price	higher	then	the	preceding	tick,	and	up	volume	is
the	volume	traded	on	up	ticks.

With	Build	Volume	On	is	set	to	Tick	Count:

				-	the	value	of	1	will	be	returned	for	1-tick	charts	
				-	the	total	number	of	Up	ticks	in	the	current	bar	will	be	returned	for	multi-tick,
volume,	and	time-based	charts

With	Build	Volume	On	is	set	to	Trade	Volume:

				-	the	Up	volume	of	the	current	tick	will	be	returned	for	1-tick	charts	
				-	the	total	Up	volume	of	the	current	bar	will	be	returned	for	multi-tick,	volume,
and	time-based	charts

Usage

Symbol_UpTicks

Note

Most	data	feeds	provide	only	a	limited	history	of	tick	and	volume	data;	storing
real-time	feed	data	will	ensure	the	availability	of	historical	tick	and	volume
data
The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

246

Plot	the	number	of	Up	ticks	in	the	current	bar	(Build	Volume	On	is	set	to	Tick
Count):

Plot1	(Symbol_UpTicks,	"Up	Ticks");

Plot	the	Up	volume	of	the	current	bar	(Build	Volume	On	is	set	to	Trade	Volume):

Plot1	(Symbol_UpTicks,	"Up	Volume");

247

Symbol_Volume

Returns	the	volume	of	the	current	bar.

For	tick	and	volume-based	charts,	and	time-based	charts	with	resolutions	of	24
hours	or	less:

			-	the	volume	traded	on	Up	ticks	will	be	returned	if	Build	Volume	On	is	set	to
Trade	Volume	
			-	the	number	of	Up	ticks	in	the	current	bar	will	be	returned	if	Build	Volume	On	is
set	to	Tick	Count

For	time-based	charts	with	resolutions	of	1	day	or	more:

			-	the	total	volume	traded	will	be	returned	if	Build	Volume	On	is	set	to	Trade
Volume	
			-	the	total	number	of	ticks	in	the	current	bar	will	be	returned	if	Build	Volume	On
is	set	to	Tick	Count

Usage

Symbol_Volume

Note

Most	data	feeds	provide	only	a	limited	history	of	volume	and	tick	data;	storing
real-time	feed	data	will	ensure	the	availability	of	historical	volume	and	tick
data.
The	range	of	returned	values	is	not	limited	by	the	MaxBarsBack	setting.	This
keyword	can	return	the	value	of	any	bar	of	the	data	series.

Example

Plot	the	volume	of	the	current	bar

Plot1	(Symbol_Volume,	"Volume");

248

Plot	the	volume	of	the	previous	bar:

Plot1	(Symbol_Volume	of	1	Bar	Ago,	"Previous	Bar's	Volume");

Plot	the	volume	of	two	bars	ago:

Plot1(Symbol_Volume	[2],	"Volume	2	bars	ago");

249

T
Same	as	Time

250

This
Used	in	combination	with	Bar	to	reference	the	current	bar.

Usage

This	Bar

Example

Buy	a	user-set	number	of	shares	on	close	of	this	bar:

Buy	This	Bar	On	Close;

251

TickID
This	keyword	can	be	used	to	distinguish	between	the	bars	with	the	same	date	and
time	stamps.

For	tick	and	volume-based	charts	returns	the	tick	index	within	a	second.	For
resolutions	higher	than	1	Tick	returns	the	index	of	the	last	tick	within	the	bar.

For	time-based	charts	with	resolutions	of	1	sec	or	more	not	supported.	Returns	0.

Realtime	ticks	stored	in	the	data	base	are	being	assigned	the	last	31	bit	-	the
identifier	of	realtime	affiliation.	In	order	to	get	the	TickID	value	without	realtime
identifier	one	needs	to	calculate	the	remainder	from	TickID	value	division	by
2147483648.

value1=Mod(TickID,	2147483648);

Usage

TickID

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Example

Plots	the	tick	index	(TickID)	of	the	last	tick	within	the	current	bar:

Plot1(TickID,"TickID");

252

Ticks
Returns	the	total	number	of	ticks	for	the	current	bar	if	Build	Volume	On	is	set	to
Tick	Count.

Returns	the	total	volume	for	the	current	bar	if	Build	Volume	On	is	set	to	Trade
Volume.

With	Build	Volume	On	is	set	to	Tick	Count:

			-	the	value	of	1	will	be	returned	for	1-tick	charts
			-	the	total	number	of	ticks	in	the	current	bar	will	be	returned	for	multi-tick,
volume,	and	time-based	charts

With	Build	Volume	On	is	set	to	Trade	Volume:

			-	the	volume	of	the	current	tick	will	be	returned	for	1-tick	charts
			-	the	total	volume	of	the	current	bar	will	be	returned	for	multi-tick,	volume,	and
time-based	charts

Please	note	that	most	data	feeds	provide	only	a	limited	history	of	tick	and	volume
data;	storing	real-time	feed	data	will	ensure	the	availability	of	historical	tick	and
volume	data.

Usage

Ticks

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Example

Plot	the	number	of	ticks	in	the	current	bar	(Build	Volume	On	is	set	to	Tick	Count):

Plot1(Ticks,"Ticks");	

253

Plot	the	volume	of	the	current	bar	(Build	Volume	On	is	set	to	Trade	Volume):

Plot1(Ticks,"Volume");

254

Time

Returns	a	numerical	value	indicating	the	closing	time	of	the	current	bar.	The	time	is
indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

Time

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Example

Time		will	return	a	value	of	1015	for	10:15	AM

Time		will	return	a	value	of	1545	for	3:45	PM

255

Time_s

Returns	a	numerical	value	indicating	the	closing	time,	including	seconds,	of	the
current	bar.	The	time	is	indicated	in	the	24-hour	HHmmss	format,	where	130000	=
1:00:00	PM.

Usage

Time_s

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Example

Time_s		will	return	a	value	of	101525	for	10:15:25	AM

Time_s		will	return	a	value	of	154500	for	3:45:00	PM

256

Today
Retained	for	backward	compatibility;	replaced	with	This	Bar

257

UpTicks
Returns	the	total	number	of	Up	ticks	for	the	current	bar	if	Build	Volume	On	is	set	to
Tick	Count.

Returns	the	total	Up	volume	for	the	current	bar	if	Build	Volume	On	is	set	to	Trade
Volume.

An	up	tick	is	a	tick	with	the	price	higher	then	the	preceding	tick,	and	up	volume	is
the	volume	traded	on	up	ticks.

With	build	volume	on	is	set	to	tick	count:

			-	the	value	of	1	will	be	returned	for	1-tick	charts
			-	the	total	number	of	Up	ticks	in	the	current	bar	will	be	returned	for	multi-tick,
volume,	and	time-based	charts	

With	build	volume	on	is	set	to	trade	volume:

			-	the	Up	volume	of	the	current	tick	will	be	returned	for	1-tick	charts
			-	the	total	Up	volume	of	the	current	bar	will	be	returned	for	multi-tick,	volume,
and	time-based	charts

Please	note	that	most	data	feeds	provide	only	a	limited	history	of	tick	and	volume
data;	storing	real-time	feed	data	will	ensure	the	availability	of	historical	tick	and
volume	data.

Usage

UpTicks

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Example

Plot	the	number	of	Up	ticks	in	the	current	bar	(Build	Volume	On	is	set	to	Tick

258

Count):

Plot1(UpTicks,"Up	Ticks");

Plot	the	Up	volume	of	the	current	bar	(Build	Volume	On	is	set	to	Trade	Volume):

Plot1(UpTicks,"Up	Volume");

259

V
Same	as	Volume

260

Volume
Returns	the	volume	of	the	current	bar.

For	tick	and	volume-based	charts,	and	time-based	charts	with	resolutions	of	24
hours	or	less:

-	the	volume	traded	on	Up	ticks	will	be	returned	if	Build	Volume	On	is	set	to	Trade
Volume	
-	the	number	of	Up	ticks	in	the	current	bar	will	be	returned	if	Build	Volume	On	is
set	to	Tick	Count

For	time-based	charts	with	resolutions	of	1	day	or	more:

-	the	total	volume	traded	will	be	returned	if	Build	Volume	On	is	set	to	Trade
Volume	
-	the	total	number	of	ticks	in	the	current	bar	will	be	returned	if	Build	Volume	On	is
set	to	Tick	Count

Please	note	that	most	data	feeds	provide	only	a	limited	history	of	volume	and	tick
data;	storing	real-time	feed	data	will	ensure	the	availability	of	historical	volume
and	tick	data.

Usage

Volume

Note

The	range	of	returned	values	is	limited	by	the	MaxBarsBack	setting.

Example

Plot	the	volume	of	the	current	bar:

Plot1(Volume,"Volume");

261

Plot	the	volume	of	the	previous	bar:

Plot1(Volume	Of	1	Bar	Ago,"Previous	bar's	volume");

Plot	the	volume	of	two	bars	ago:

Plot1(Volume[2],"Volume	2	bars	ago");

262

Yesterday
Retained	for	backward	compatibility.

263

ComputerDateTime

Returns	a	double-precision	decimal	DateTime	value	indicating	the	computer's
current	date	and	time.

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

Usage

ComputerDateTime

Example

ComputerDateTime		will	return	a	value	of	39448.25000000	for	6:00	AM	on	January
1st,	2008

264

CurrentDate

Returns	a	numerical	value	indicating	the	computer's	current	date.	The	date	is
indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since	1900,
MM	is	the	month,	and	dd	is	the	day	of	the	month.

For	example,	the	value	returned	for	the	date	of	October	30th,	2008	will	be	1081030.

Usage

CurrentDate

Example

CurrentDate		will	return	a	value	of	1081030	for	October	30th,	2008

265

CurrentTime

Returns	a	numerical	value,	indicating	the	computer's	current	time.	The	time	is
indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

CurrentTime

Example

CurrentTime		will	return	a	value	of	1015	for	10:15	AM

CurrentTime		will	return	a	value	of	1545	for	3:45	PM

266

CurrentTime_s

Returns	a	numerical	value	indicating	the	computer's	current	time,	including
seconds.	The	time	is	indicated	in	the	24-hour	HHmmss	format,	where	130000	=
1:00:00	PM.

Usage

CurrentTime_s

Example

CurrentTime_s		will	return	a	value	of	101525	for	10:15:25	AM

CurrentTime_s		will	return	a	value	of	154500	for	3:45:00	PM

267

DateTime2ELTime

Returns	a	numerical	value	indicating	the	time	from	the	specified	DateTime	value.
The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

DateTime2ELTime(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value

Example

DateTime2ELTime(39449.65625000)		will	return	a	value	of	1545,	indicating	3:45
PM

268

DateTime2ELTime_s

Returns	a	numerical	value	indicating	the	time,	including	seconds,	from	the
specified	DateTime	value.	The	time	is	indicated	in	the	24-hour	HHmmss	format,
where	130000	=	1:00:00	PM.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

DateTime2ELTime_s	(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value

Example

DateTime2ELTime_s(39449.646354167)		will	return	a	value	of	153045,	indicating
3:30:45	PM

269

DateTimeToString

Returns	a	string	expression	corresponding	to	the	specified	DateTime	value.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

DateTimeToString	(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value	to	be	converted	to	a
string	expression

Notes

The	output	example	is	in	the	default	US	regional	date	and	time	format.	Date	and
time	formats	are	controlled	by	the	Regional	Options	settings	that	can	be	accessed
from	the	Control	Panel	of	the	Windows	XP	operating	system.

Example

DateTimeToString(39448.25000000)		will	return	the	string	"1/1/2008	6:00:00
AM"

270

DateTimeToString_Ms

Returns	a	string	value	indicating	date	and	time	of	a	bar	with	millisecond	precision.

Usage

DateTimeToString_Ms(DT)

Where:	DT	is	DateTime	value.

Example

DateTimeToString_Ms(DateTime)		will	return	a	string	value	corresponding	to	the
time	and	time	of	the	current	bar

"5/28/2013	08:41:11.871".

271

DateToJulian

Returns	a	numerical	value	corresponding	to	the	Julian	Date	equivalent	of	the
specified	date.

The	date	is	specified	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Julian	Date	indicates	the	number	of	days	that	have	elapsed	since	January	1st,	1900.

Usage

DateToJulian(YYYMMdd)

Where:	YYYMMdd		-	a	numerical	expression,	specifying	the	date	in	YYYMMdd
format

Example

DateToJulian	(1080101)		will	return	a	value	of	39448,	corresponding	to	the
specified	date	of	January	1st,	2008

DateToJulian	(990402)		will	return	a	value	of	36252,	corresponding	to	the
specified	date	of	April	2nd,	1999

272

DateToString

Returns	a	string	expression	corresponding	to	the	date	(integer)	portion	of	the
specified	DateTime	value.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

DateToString(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value	to	be	converted	to	a
string	expression	representing	the	date

Notes

The	output	example	is	in	the	default	US	regional	date	format.	Date	format	is
controlled	by	the	Regional	Options	settings	that	can	be	accessed	from	the	Control
Panel	of	the	Windows	XP	operating	system.

Example

DateToString(39448.25000000)		will	return	the	string	"1/1/2008".

273

DayFromDateTime

Returns	a	numerical	value	indicating	the	day	of	the	month	for	the	specified
DateTime	value.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

DayFromDateTime(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value

Example

DayFromDateTime(39449.25000000)	will	return	a	value	of	2,	indicating	the	2nd	day
of	the	month	of	January,	2008

274

DayOfMonth

Returns	a	numerical	value,	indicating	the	day	of	the	month	of	the	specified	date.

The	date	is	specified	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

DayOfMonth(YYYMMdd)

Where:	YYYMMdd		-	a	numerical	expression,	specifying	the	date	in	YYYMMdd
format

Example

DayOfMonth(1080101)		will	return	a	value	of	1,	indicating	the	1st	day	of	the	month
of	January,	2008

DayOfMonth(990605)		will	return	a	value	of	5,	indicating	the	5th	day	of	the	month	of
June,	1999

275

DayOfWeek

Returns	a	numerical	value,	indicating	the	day	of	the	week	corresponding	to	the
specified	date,	where	0	=	Sunday,	1	=	Monday,	etc.

The	Date	is	specified	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

DayOfWeek(YYYMMdd)

Where:	YYYMMdd		-	a	numerical	expression,	specifying	the	date	in	YYYMMdd
format

Example

DayOfWeek(1080101)		will	return	a	value	of	2,	indicating	Tuesday,	for	January	1st,
2008

DayOfWeek(990603)		will	return	a	value	of	4,	indicating	Thursday,	for	June	3rd,
1999

276

DayOfWeekFromDateTime

Returns	a	numerical	value,	indicating	the	day	of	the	week	corresponding	to	the
specified	DateTime	value,	where	0	=	Sunday,	1	=	Monday,	etc.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

DayOfWeekFromDateTime(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value

Example

DayOfWeekFromDateTime(39448.25000000)		will	return	a	value	of	2,	indicating
Tuesday,	for	January	1st,	2008

277

ELDateToDateTime

Returns	the	integer	portion	of	a	double-precision	decimal	DateTime	value
corresponding	to	the	specified	EL	Date.

EL	Date	is	specified	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

Usage

ELDateToDateTime(YYYMMdd)

Where:	YYYMMdd		-	a	numerical	expression,	specifying	the	date	in	EL	YYYMMdd
format

Example

ELDateToDateTime(1080101)		will	return	a	value	of	39448.00000000,
corresponding	to	the	specified	date	of	January	1st,	2008

ELDateToDateTime(990402)		will	return	a	value	of	36252.00000000,
corresponding	to	the	specified	date	of	April	2nd,	1999

278

ELTimeToDateTime

Returns	the	fractional	portion	of	a	double-precision	decimal	DateTime	value
corresponding	to	the	specified	time.	The	time	is	specified	in	the	24-hour	HHmm
format,	where	1300	=	1:00	PM.

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

Usage

ELTimeToDateTime(HHmm)

Where:	HHmm		-	a	numerical	expression	specifying	the	time

Example

ELTimeToDateTime(1015)		will	return	a	value	of	0.42708333,	corresponding	to	the
specified	time	of	10:15	AM

ELTimeToDateTime(1545)		will	return	a	value	of	0.65625000,	corresponding	to	the
specified	time	of	3:45	PM

279

ELTimeToDateTime_s

Returns	the	fractional	portion	of	a	double-precision	decimal	DateTime	value
corresponding	to	the	specified	time,	including	seconds.	The	time	is	specified	in	the
24-hour	HHmmss	format,	where	130000	=	1:00:00	PM.

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

Usage

ELTimeToDateTime_s(HHmmss)

Where:	HHmmss		-	a	numerical	expression	specifying	the	time

Example

ELTimeToDateTime_s(101525)		will	return	a	value	of	0.427372685,	corresponding
to	the	specified	time	of	10:15:25	AM

ELTimeToDateTime_s(154500)		will	return	a	value	of	0.656250000,	corresponding
to	the	specified	time	of	3:45:00	PM

280

El_DateStr

Returns	an	8-character	numerical	string	corresponding	to	the	specified	date.	The
string	is	in	the	yyyyMMdd	format,	where	yyyy	is	the	four-digit	year,	MM	is	the
month,	and	dd	is	the	day	of	the	month.

Usage

El_DateStr(dd,	MM,	yyyy)

Where:	dd		-	a	numerical	expression	specifying	the	day	of	the	month
													MM		-	a	numerical	expression	specifying	the	month
													yyyy		-	a	four-digit	numerical	expression	specifying	the	year

Example

El_DateStr(02,04,2008)	will	return	the	string	"20080402",	corresponding	to	the
specified	date	of	April	2nd,	2008.

281

El_DateToDateTime
Same	as	the	ElDateToDateTime

282

EL_TimeToDateTime
Same	as	the	ElTimeToDateTime

283

EL_TimeToDateTime_s
Same	as	ElTimeToDateTime_s

284

EncodeDate

Returns	the	integer	portion	of	a	double-precision	decimal	DateTime	value
corresponding	to	the	specified	date.

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

Usage

EncodeDate(yy,MM,dd)

Where:	yy		-	a	numerical	expression	specifying	the	two-digit	year
												MM		-	a	numerical	expression	specifying	the	month
												dd		-	a	numerical	expression	specifying	the	day	of	the	month

Example

EncodeDate(08,01,01)		will	return	a	value	of	39448.00000000,	corresponding	to
the	specified	date	of	January	1st,	2008

285

EncodeTime

Returns	the	fractional	portion	of	a	double-precision	decimal	DateTime	value
corresponding	to	the	specified	time.

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

Usage

EncodeTime(HH,mm,ss,mmm)

Where:	HH		-	a	numerical	expression	specifying	the	hours	in	24-hour	format
													mm		-	a	numerical	expression	specifying	the	minutes
													ss		-	a	numerical	expression	specifying	the	seconds
													mmm		-	a	numerical	expression	specifying	the	milliseconds

Example

EncodeTime(16,29,55,500)		will	return	a	value	of	0.6874479167,	corresponding	to
the	specified	time	of	16:29:55.500

286

FormatDate

Returns	a	formated	string	expression	corresponding	to	the	date	(integer)	portion	of
the	specified	DateTime	value.

The	format	of	the	string	expression,	including	the	abbreviations	and	separators,	is
defined	by	the	specified	format	string.	The	format	string	consists	of	one	or	more
elements	arranged	in	the	desired	order.	Each	element	represents	a	particular	part	of
the	date	in	a	specific	format.	Spaces	and	separator	characters	to	be	used	can	be
inserted	within	the	format	string.

Usage

FormatDate("FormatString",	DateTime)

Parameters

FormatString	-	a	format	string,	specifying	the	format	of	the	output	string
expression	representing	the	date

The	following	elements	can	be	used	in	the	format	string:

d Day	of	month	as	digits	with	no	leading	zero	for	single-digit	days
dd Day	of	month	as	digits	with	leading	zero	for	single-digit	days
ddd Day	of	week	as	a	three-letter	abbreviation
dddd Day	of	week	as	its	full	name
M Month	as	digits	with	no	leading	zero	for	single-digit	months
MM Month	as	digits	with	leading	zero	for	single-digit	months
MMM Month	as	a	three-letter	abbreviation
MMMMMonth	as	its	full	name
y Year	as	last	two	digits,	but	with	no	leading	zero	for	years	less	than	10
yy Year	as	last	two	digits,	but	with	leading	zero	for	years	less	than	10

yyyy Year	represented	by	full	four	digits

DateTime	-	a	double-precision	decimal	DateTime	value	to	be	converted	to	a	string

287

expression	representing	the	date

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Example

FormatDate("dddd,	MMMM	dd,	yyyy.",39469.250)	will	return	the	string
"Tuesday,	January	22,	2008."

FormatDate("M/d/y",39469.250)	will	return	the	string	"1/22/8"

FormatDate("dd-MM-yy",39469.250)	will	return	the	string	"22-01-08"

FormatDate("Next	ddd	is:	MMM	dd",39469.250)	will	return	the	string	"Next	Tue
is:	Jan	22"

288

FormatTime

Returns	a	formated	string	expression	corresponding	to	the	time	(fractional)	portion
of	the	specified	DateTime	value.

The	format	of	the	string	expression,	including	separators,	is	defined	by	the
specified	format	string.	The	format	string	consists	of	one	or	more	elements
arranged	in	the	desired	order.	Each	element	represents	a	particular	unit	of	time	in	a
specific	format.	Spaces	and	separator	characters	to	be	used	can	be	inserted	within
the	format	string.

Usage

FormatTime("FormatString",	DateTime)

Parameters

FormatString	-	a	format	string,	specifying	the	format	of	the	output	string
expression	representing	the	time

The	following	elements	can	be	used	in	the	format	string:

h Hours	in	12-hour	AM/PM	format	with	no	leading	zero	for	single-digit	hours
hh Hours	in	12-hour	AM/PM	format	with	leading	zero	for	single-digit	hours
H Hours	in	24-hour	format	with	no	leading	zero	for	single-digit	hours
HH Hours	in	24-hour	format	with	leading	zero	for	single-digit	hours
m Minutes	with	no	leading	zero	for	single-digit	minutes
mmMinutes	with	leading	zero	for	single-digit	minutes
s Seconds	with	no	leading	zero	for	single-digit	seconds
ss Seconds	with	leading	zero	for	single-digit	seconds
t One	character	AM/PM	designator
tt Multicharacter	AM/PM	designator

DateTime	-	a	double-precision	decimal	DateTime	value	to	be	converted	to	a	string
expression	representing	the	time

289

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Example

FormatTime("hh:mm:ss	t",39469.6674)	will	return	the	string	"04:01:03	P"

FormatTime("h	tt",39469.6674)	will	return	the	string	"4	PM"

FormatTime("HH:mm",39469.6674)	will	return	the	string	"16:01"

FormatTime("m	MIN	s	SEC",39469.6674)	will	return	the	string	"1	MIN	3	SEC"

290

Friday

Returns	a	numerical	value	of	5,	corresponding	to	Friday.

Usage

Friday

Example

Friday		will	return	a	value	of	5

291

HoursFromDateTime

Returns	a	numerical	value	indicating	the	hours	from	the	specified	DateTime	value.
The	hours	are	indicated	in	the	24-hour	format,	where	13	=	1	PM.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

HoursFromDateTime(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value

Example

HoursFromDateTime(39449.85000000)	will	return	a	value	of	20,	indicating	8	PM

292

IncMonth

Returns	a	numerical	value	corresponding	to	a	Julian	date	that	is	after	or	before	the
specified	Julian	date	by	a	specified	number	of	calendar	months.

Julian	Date	indicates	the	number	of	days	that	have	elapsed	since	January	1st,	1900.

Usage

IncMonth(JulianDate,M)

Where:	JulianDate		-	a	numerical	expression	specifying	the	Julian	Date
													M		-	a	numerical	expression	specifying	the	number	of	calendar	months
from	the	specified	Julian	date;	if	the	value	of	M		is;	positive,	a	date	after	the
specified	date	will	be	returned;	if	the	value	of	M		is;	negative,	a	date	before	the
specified	date	will	be	returned

Example

IncMonth(39417,1)	will	return	a	value	of	39448,	corresponding	to	January	1st,
2008,	one	calendar	month	after	the	specified	date	of	December	1st,	2007

IncMonth(36252,-2)	will	return	a	value	of	36193,	corresponding	to	February	2nd,
1999,	two	calendar	months	before	the	specified	date	of	April	2nd,	1999

293

JulianToDate

Returns	a	numerical	value	corresponding	to	the	EL	Date	equivalent	of	the	specified
Julian	Date.

Julian	Date	indicates	the	number	of	days	that	have	elapsed	since	January	1st,	1900.

EL	Date	is	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since
1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

JulianToDate(JulianDate)

Where:	JulianDate		-	a	numerical	expression	specifying	the	Julian	Date

Example

JulianToDate	(39448)	will	return	a	value	of	1080101,	corresponding	to	the
specified	date	of	January	1st,	2008

JulianToDate	(36252)	will	return	a	value	of	990402,	corresponding	to	the
specified	date	of	April	2nd,	1999

294

LastCalcDateTime

Returns	a	numerical	value	indicating	the	closing	DateTime	of	the	last	completed
bar.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

LastCalcDateTime

Example

LastCalcDateTime	will	return	a	value	of	41871.83333	for	the	last	bar	completion
at	08/20/2014	8:00	PM

295

LastCalcJDate

Returns	a	numerical	value	indicating	the	Julian	date	for	the	last	completed	bar.

Julian	Date	indicates	the	number	of	days	that	have	elapsed	since	January	1st,	1900.

Usage

LastCalcJDate

Example

LastCalcJDate	will	return	a	value	of	39448	for	the	last	bar	completion	date	of
January	1st,	2008

296

LastCalcMMTime

Returns	a	numerical	value	indicating	the	closing	time	of	the	last	completed	bar.	The
time	is	indicated	as	the	number	of	minutes	that	have	passed	since	midnight.

Usage

LastCalcMMTime

Example

LastCalcMMTime		will	return	a	value	of	850	for	the	last	bar	completion	time	of	2:10
PM

297

LastCalcmSTime

Returns	a	numerical	value	indicating	the	closing	time	of	the	last	completed	bar.	The
time	is	indicated	as	the	number	of	milliseconds	that	have	passed	since	midnight.

Usage

LastCalcmSTime

Example

LastCalcmSTime	will	return	a	value	of	51030150	for	the	last	bar	completion	time
of	2:10:30.150	PM

298

LastCalcSSTime

Returns	a	numerical	value	indicating	the	closing	time	of	the	last	completed	bar.	The
time	is	indicated	as	the	number	of	seconds	that	have	passed	since	midnight.

Usage

LastCalcSSTime

Example

LastCalcSSTime	will	return	a	value	of	51030	for	the	last	bar	completion	time	of
2:10:30	PM

299

MilliSecondsFromDateTime

Returns	a	numerical	expression	indicating	the	millisecond	stamp	of	DateTime
value.

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

Usage

MilliSecondsFromDateTime(DT)

Where:	DT	-	is	a	DateTime	value.

Example

MillisecondsFromDateTime(DateTtime)		will	return	687.00	if	the	time	stamp	of
the	current	bar	is	11:57:07.687

300

MinutesFromDateTime

Returns	a	numerical	value	indicating	the	minutes	from	the	specified	DateTime
value.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

MinutesFromDateTime(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value

Example

MinutesFromDateTime(39449.35000000)	will	return	a	value	of	24,	indicating	24
minutes	after	8	AM

301

Monday

Returns	a	numerical	value	of	1,	corresponding	to	Monday.

Usage

Monday

Example

Monday		will	return	a	value	of	1

302

Month

Returns	a	numerical	value,	indicating	the	month	of	the	specified	EL	Date.

EL	Date	is	specified	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

Month(YYYMMdd)

Where:	YYYMMdd		-	a	numerical	expression,	specifying	the	date	in	EL	YYYMMdd
format

Example

Month	(1080101)	will	return	a	value	of	1,	indicating	the	month	of	January

Month	(990605)	will	return	a	value	of	6,	indicating	the	month	of	June

303

MonthFromDateTime

Returns	a	numerical	value	indicating	the	month	for	the	specified	DateTime	value.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

MonthFromDateTime(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value

Example

MonthFromDateTime	(39600.25000000)	will	return	a	value	of	6,	indicating	the
month	of	June

304

Saturday

Returns	a	numerical	value	of	6,	corresponding	to	Saturday.

Usage

Saturday

Example

Saturday		will	return	a	value	of	6

305

SecondsFromDateTime

Returns	a	numerical	value	indicating	the	seconds	from	the	specified	DateTime
value.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

SecondsFromDateTime(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value

Example

SecondsFromDateTime	(39449.35440000)		will	return	a	value	of	20,	indicating	20
seconds	from	8:30:20	AM

306

StringToDate

Returns	the	integer	portion	of	a	double-precision	decimal	DateTime	value,
corresponding	to	the	specified	date.	The	date	is	specified	by	a	string	expression
"MM/dd/yy"*	or	"MM/dd/yyyy"*,	where	MM*	is	the	month,	dd*	is	the	day,	and	yy
or	yyyy	is	a	two-digit	or	four-digit	year.

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

Usage

StringToDate("MM/dd/yy")

or:

StringToDate("MM/dd/yyyy")

Where:	MM	-	month*
												dd	-	day	of	the	month*	
												yy	-	a	two-digit	year	
												yyyy	-	a	four-digit	year

Notes

*	Described	usage	and	examples	are	for	the	default	US	regional	date	format.	If	the
default	UK	regional	format	is	selected,	the	dates	will	be	in		dd/MM/yy		and	
dd/MM/yyyy		format	instead.	Date	format	is	controlled	by	the	Regional	Options
settings	that	can	be	accessed	from	the	Control	Panel	of	the	Windows	XP	operating
system.

Example

StringToDate("01/01/2008")		will	return	a	value	of	39448.00000000,
corresponding	to	the	specified	date	of	January	1st,	2008

307

StringToDate("04/04/99")		will	return	a	value	of	36254.00000000,	corresponding
to	the	specified	date	of	April	4th,	1999

308

StringToDateTime

Returns	a	double-precision	decimal	DateTime	value	corresponding	to	the	specified
date	and	time.	The	date	and	time	are	specified	by	a	string	expression	"MM/dd/yy
hh:mm:ss	tt"*	or	"MM/dd/yyyy	hh:mm:ss	tt"*,	where	MM*	is	the	month,	dd*	is	the
day,	yy	or	yyyy	is	a	two-digit	or	four-digit	year,	hh	is	the	hours	in	12-hour	AM/PM
format,	mm	is	the	minutes,	ss	is	the	seconds,	and	tt	is	the	AM/PM	designator.

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

Usage

StringToDateTime("MM/dd/yy	hh:mm:ss	tt")

or:

StringToDateTime("MM/dd/yyyy	hh:mm:ss	tt")

Where:	MM	-	month*
												dd	-	day	of	the	month*
												yy	-	a	two-digit	year
												yyyy	-	a	four-digit	year
												hh	-	hours
												mm	-	minutes
												ss	-	seconds
												tt	-	AM/PM	designator

Notes

*	Described	usage	and	examples	are	for	the	default	US	regional	date	and	time
formats.	If	the	default	UK	regional	format	is	selected,	the	dates	will	be	in
dd/MM/yy		and	dd/MM/yyyy		format	instead.	Date	and	time	formats	are	controlled
by	the	Regional	Options	settings	that	can	be	accessed	from	the	Control	Panel	of	the
Windows	XP	operating	system.

309

Example

StringToDateTime("01/01/2008	08:00:00	AM")		will	return	a	value	of
39448.33333333,	corresponding	to	08:00:00	AM	on	January	1st,	2008

StringToDateTime("04/04/99	04:48:00	PM")		will	return	a	value	of
36254.70000000,	corresponding	to	04:48:00	PM	on	April	4th,	1999

310

StringToDTFormatted

Returns	the	DateTime	value	for	the	string	in	a	particular	format.	The	format	of	the
string	expression,	including	the	abbreviations	and	separators,	is	defined	by	the
specified	format	string.	The	format	string	consists	of	one	or	more	elements
arranged	in	the	desired	order.	Each	element	represents	a	particular	part	of	the	date
in	a	specific	format.	Spaces	and	separator	characters	to	be	used	can	be	inserted
within	the	format	string.

Usage

StringToDTFormatted("DateTimeString",	"FormatString")

Parameters

DateTimeString	-	time	and	date	value	in	string	format.

FormatString	-	a	format	string,	specifying	the	format	of	the	output	string
expression	representing	the	date	and	time.

The	following	elements	can	be	used	in	the	format	string:

												d	-	day	of	month	as	digits	with	no	leading	zero	for	single-digit	days
												dd	-	day	of	month	as	digits	with	leading	zero	for	single-digit	days
												ddd	-	day	of	week	as	a	three-letter	abbreviation
												dddd	-	day	of	week	as	its	full	name
												M	-	month	as	digits	with	no	leading	zero	for	single-digit	months
												MM	-	onth	as	digits	with	leading	zero	for	single-digit	months
												MMM	-	month	as	a	three-letter	abbreviation
												MMMM	-	month	as	its	full	name
												y	-	year	as	last	two	digits,	but	with	no	leading	zero	for	years	less	than	10
												yy	-	year	as	last	two	digits,	but	with	leading	zero	for	years	less	than	10	
												yyyy	-	year	represented	by	full	four	digits
												h	-	hours	in	12-hour	AM/PM	format	with	no	leading	zero	for	single-digit
hours
												hh	-	hours	in	12-hour	AM/PM	format	with	leading	zero	for	single-digit
hours
												H	-	hours	in	24-hour	format	with	no	leading	zero	for	single-digit	hours

311

												HH	-	hours	in	24-hour	format	with	leading	zero	for	single-digit	hours
												m	-	minutes	with	no	leading	zero	for	single-digit	minutes
												mm	-	minutes	with	leading	zero	for	single-digit	minutes
												s	-	seconds	with	no	leading	zero	for	single-digit	seconds
												ss	-	seconds	with	leading	zero	for	single-digit	seconds
												t	-	one	character	AM/PM	designator
												tt	-	multicharacter	AM/PM	designator

Return	value

DateTime	-	a	double-precision	decimal	DateTime	value,	corresponding	to	the	first
string	parameter	with	a	second	
string	parameter	format	applied	to	it.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	
portion	of	the	DateTime	value	specifies	the	fraction	of	the	day	since	midnight.

Note

Attention!	Check	if	the	returned	value	is	correct!	If	conversion	fails,	the	function
returns	-1.

Example

StringToDTFormatted("22/11/2013	15:35",	"dd/MM/yyy	HH:mm")		will	return
41600.649305555555	,	which	represents	November	22nd	2013,	3:35	PM.

StringToDTFormatted("02/17/11",	"MM/dd/yy")		will	return	40591	,	which
represents	February	17th	2011.

StringToDTFormatted("17/02/11",	"MM/dd/yy")		will	return	-1,	string
conversion	to	DateTime	format	failed.

StringToDTFormatted("4:00	PM",	"h:mm	tt")		will	return	2.666666666666667	,
which	represents	the	minimum	value	of	JulianDate	=	January	1st	1900,	4:00	PM.

312

StringToTime

Returns	the	fractional	portion	of	a	double-precision	decimal	DateTime	value,
corresponding	to	the	specified	time.

The	time	is	specified	by	a	string	expression	"hh:mm:ss	tt",	where	hh	is	the	hours	in
the	12-hour	AM/PM	format,	mm	is	the	minutes,	ss	is	the	seconds,	and	tt	is	the
AM/PM	designator.

The	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.

Usage

StringToTime("hh:mm:ss	tt")

Where:	hh	-	hours	in	the	12-hour	AM/PM	format
													mm	-	minutes
													ss	-	seconds
													tt	-	AM/PM	designator

Notes

Described	usage	and	examples	are	for	the	default	US	regional	time	format.	Time
format	is	controlled	by	the	Regional	Options	settings	that	can	be	accessed	from	the
Control	Panel	of	the	Windows	XP	operating	system.

Example

StringToTime	("08:00:00	AM")		will	return	a	value	of	0.33333333

StringToTime	("04:48:00	PM")		will	return	a	value	of	0.70000000

313

Sunday

Returns	a	numerical	value	of	0,	corresponding	to	Sunday.

Usage

Sunday

Example

Sunday		will	return	a	value	of	0

314

Thursday

Returns	a	numerical	value	of	4,	corresponding	to	Thursday.

Usage

Thursday

Example

Thursday		will	return	a	value	of	4

315

Time2Time_s

Returns	a	numerical	value	indicating	the	time	in	the	HHmmss	format,
corresponding	to	the	specified	time	in	the	HHmm	format.

The	time	is	returned	in	the	24-hour	HHmmss	format,	where	130000	=	1:00:00	PM,
and	specified	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

Time2Time_s(HHmm)

Where:	HHmm		-	a	numerical	expression	specifying	the	time

Example

Time2Time_s(1015)		will	return	a	value	of	101500

Time2Time_s(1545)		will	return	a	value	of	154500

316

TimeToString

Returns	a	string	expression	corresponding	to	the	time	(fractional)	portion	of	the
specified	DateTime	value.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

TimeToString(DateTime)

Where:	DateTime	-	a	double-precision	decimal	DateTime	value	to	be	converted	to	a
string	expression	representing	the	time

Notes

The	output	example	is	in	the	default	US	regional	time	format.	Time	format	is
controlled	by	the	Regional	Options	settings	that	can	be	accessed	from	the	Control
Panel	of	the	Windows	XP	operating	system.

Example

TimeToString(39448.75000000)		will	return	the	string	"6:00	PM"

317

Time_s2Time

Returns	a	numerical	value	indicating	the	time	in	the	HHmm	format,	corresponding
to	the	specified	time	in	the	HHmmss	format;	the	seconds	are	truncated.

The	time	is	returned	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM,	and
specified	in	the	24-hour	HHmmss	format,	where	130000	=	1:00:00	PM.

Usage

Time_s2Time(HHmmss)

Where:	HHmmss		-	a	numerical	expression	specifying	the	time

Example

Time_s2Time(101520)		will	return	a	value	of	1015

Time_s2Time(154548)		will	return	a	value	of	1545

318

Tuesday

Returns	a	numerical	value	of	2,	corresponding	to	Tuesday.

Usage

Tuesday

Example

Tuesday		will	return	a	value	of	2

319

Wednesday

Returns	a	numerical	value	of	3,	corresponding	to	Wednesday.

Usage

Wednesday

Example

Wednesday		will	return	a	value	of	3

320

Year

Returns	a	numerical	value,	indicating	the	year	of	the	specified	EL	Date.

EL	Date	is	specified	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

Year(YYYMMdd)

Where:	YYYMMdd		-	a	numerical	expression,	specifying	the	date	in	EL	YYYMMdd
format

Example

Year(1080101)	will	return	a	value	of	108,	indicating	the	year	of	2008

Year(990605)	will	return	a	value	of	99,	indicating	the	year	of	1999

321

YearFromDateTime

Returns	a	numerical	value	indicating	the	year	for	the	specified	DateTime	value.

The	integer	portion	of	the	DateTime	value	specifies	the	number	of	days	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	specifies	the
fraction	of	the	day	since	midnight.

Usage

YearFromDateTime(DateTime)

Where:	DateTime		-	a	double-precision	decimal	DateTime	value

Example

YearFromDateTime(39449.25000000)		will	return	a	value	of	2008,	indicating	the
year	of	2008

322

Array
Declares	one	or	more	names	as	arrays,	containing	multiple	variable	data	elements;
specifies	the	array	structure,	data	elements	type	and	initial	value,	update	basis,	and
data	number,	for	each	of	the	arrays.

Data	elements	type	can	be	numerical,	string,	or	true/false.

The	number	of	elements	in	an	array	can	be	fixed	or	dynamic	(unlimited).

In	arrays	with	a	fixed	number	of	elements,	the	elements	can	be	arranged	in	single
or	multiple	dimensions.	A	one-dimensional	10-element	array	contains	10	elements,
a	two-dimensional	10-element	by	10-element	array	contains	100	elements,	a	three-
dimensional	10	by	10	by	10	element	array	contains	1000	elements,	a	four-
dimensional	10	by	10	by	10	by	10	element	array	contains	10000	elements,	etc.	The
maximum	number	of	array	dimensions	in	PowerLanguage	is	9.

Each	element	in	an	array	is	referenced	by	one	or	more	index	numbers,	one	for
each	of	the	dimensions.	Indexing	starts	at	0	for	each	of	the	dimensions.

Dynamic	arrays	(arrays	with	an	unlimited	number	of	elements)	are	one-
dimensional,	and	are	initialized	at	declaration	as	having	only	one	element.	Declared
dynamic	arrays	can	be	resized	using	Array_SetMaxIndex.

Elements	can	be	manipulated	individually	or	as	a	group,	in	all	or	part	of	an	array.

Usage

Array:<IntraBarPersist>ArrayName1[D1,D2,D3,etc.](InitialValue1<,DataN>),
<IntraBarPersist>ArrayName2[D1,D2,D3,etc.](InitialValue2<,DataN>),etc.

Parameters	inside	the	angled	brackets	are	optional

Parameters

IntraBarPersist	-	an	optional	parameter;	specifies	that	the	value	of	the	array
elements	is	to	be	updated	on	every	tick	
If	this	parameter	is	not	specified,	the	value	will	be	updated	at	the	close	of	each	bar.

ArrayName	-	an	expression	specifying	the	array	name

323

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.	The
name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

D	-	a	numerical	expression	specifying	the	array	size	in	elements,	starting	at	0,	for
each	of	the	dimensions;	a	single	expression	specifies	a	one-dimensional	array,	two
expressions	specify	a	two-dimensional	(D1	by	D2)	array,	three	expressions	specify	a
three-dimensional	(D1	by	D2	by	D3)	array,	etc.	A	dynamic	array,	with	an	unlimited
number	of	elements,	is	specified	by	the	empty	square	brackets:	[]	and	will	be	a
one-dimensional	array.

InitialValue	-	an	expression,	specifying	the	initial	value	and	defining	the	data	type
for	all	of	the	elements	in	the	array
The	value	can	be	a	numerical,	string,	or	true/false	expression;	the	type	of	the
expression	defines	the	data	type.

DataN	-	an	optional	parameter;	specifies	the	Data	Number	of	the	data	series	the
array	is	to	be	tied	to	
If	this	parameter	is	not	specified,	the	array	will	be	tied	to	the	default	data	series.

Example

Declare	Length	and	SFactor	as	9-element	one-dimensional	numerical	arrays	with
data	elements'	initial	values	of	0:

Array:Length[8](0),SFactor[8](0);

Declare	Max_Price	as	a	24-element	by	60-element	two-dimensional	numerical
array,	updated	on	every	tick,	tied	to	the	series	with	Data	#2,	and	with	data	elements'
initial	values	equal	to	the	value	of	Close	function:

Array:IntraBarPersist	Max_Price[23,59](Close,Data2);

Declare	Highs2	as	a	dynamic	numerical	array	with	data	elements'	initial	values	of
0:

Array:Highs2[](0);

324

Arrays
Same	as	the	Array

325

Input
Declares	one	or	more	names	as	inputs;	specifies	the	default	value	and	defines	the
input	type	for	each	input.

Inputs	can	be	numerical,	string,	or	true/false.	Once	declared,	the	value	of	the	input
cannot	be	modified	by	the	study's	code.

Usage

Input:InputName1(DefaultValue1),	InputName2(DefaultValue2),	etc.

Parameters

InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.	The
name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.	

DefaultValue	-	an	expression	specifying	the	default	value	and	defining	the	input
type

The	expression	can	be	numerical,	string,	or	true/false;	the	type	of	the	expression
defines	the	input	type.

Example

Declare	Length	as	a	numerical	input	with	the	default	value	of	20:

Input:Length(20);	

Declare	Price	as	a	numerical	input	with	the	default	value	equal	to	the	value	of	Close
function,	and	Name	as	a	character	string	input	with	the	default	value	of	"Last
Close":

Input:Price(Close),	Name("Last	Close");	

Declare	Draw_Line	as	a	true/false	input	with	the	default	value	of	True:

326

Input:Draw_Line(True);

327

Inputs
Same	as	the	Input

328

IntraBarPersist
Used	in	variable	and	array	declaration	statements,	before	a	variable	or	array	name,
to	specify	that	the	value	of	the	variable	or	array	elements	are	to	be	updated	on
every	tick.

If	IntraBarPersist	is	not	specified,	the	value	will	be	updated	at	the	close	of	each
bar.

Usage

Declaration:[IntraBarPersist]Name(InitialValue1)

Example

Declare	Max	as	a	numerical	variable,	updated	on	every	tick,	with	the	initial	value	of
100:

Variable:IntraBarPersist	Max(100);	

Declare	Max_Price	as	a	24-element	single-dimension	numerical	array,	updated	on
every	tick,	and	with	data	elements'	initial	values	of	0:

Array:IntraBarPersist	Max_Price[23](0);

329

Numeric
Used	in	function	input	declaration	statements	to	define	an	input	as	Numerical.

Input	defined	as	Numerical	can	be	used	both	as	a	Numerical	Simple	as	well	as	a
Numerical	Series	input;	the	value	of	a	Simple	input	is	constant	from	bar	to	bar	and
thus	has	no	history,	while	the	value	of	a	Series	input	may	vary	from	bar	to	bar	and
can	be	referenced	historically.

Usage

Input:InputName(Numeric)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	Length	as	a	Numerical	function	input:

Input:Length(Numeric);

330

NumericArray
Used	in	function	input	declaration	statements	to	define	an	input	as	a	Numerical
Array	with	a	specified	number	of	dimensions.

Input	defined	as	Numerical	can	be	used	both	as	a	Numerical	Simple	as	well	as	a
Numerical	Series	input;	the	value	of	a	Simple	input	is	constant	from	bar	to	bar	and
thus	has	no	history,	while	the	value	of	a	Series	input	may	vary	from	bar	to	bar	and
can	be	referenced	historically.

Usage

Input:InputName[M1,M2,M3,etc.](NumericArray)

Parameters

InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

M	-	an	input	variable	that	represents	the	maximum	index	value	for	each	dimension
of	the	array	passed	to	the	function;	a	single	input	variable	specifies	a	one-
dimensional	array	input,	two	input	variables	specify	a	two-dimensional	(M1	by	M2)
array	input,	three	input	variables	specify	a	three-dimensional	(M1	by	M2	by	M3)
array	input,	etc.

An	input	will	only	accept	an	array	with	the	specified	number	of	dimensions.

Example

Declare	Length	as	a	one-dimensional	Numerical	Array	function	input:

Input:Length[X](NumericArray);

The	maximum	index	value	for	the	array	passed	to	the	function	will	be	assigned	to
input	variable	X.

331

Declare	Table	as	a	three-dimensional	Numerical	Array	function	input:

Input:Table[X,Y,Z](NumericArray);

The	maximum	index	value	for	each	dimension	of	the	array	passed	to	the	function
will	be	assigned	to	input	variables	X,	Y,	and	Z.

332

NumericArrayRef
Used	in	function	input	declaration	statements	to	define	an	input	as	Passed	by
Reference	Numerical	Array	with	a	specified	number	of	dimensions.

Declaring	an	input	as	Passed	by	Reference	enables	the	function	to	modify	the
values	of	variables	passed	as	the	input.

Usage

Input:InputName[M1,M2,M3,etc.](NumericArrayRef)

Parameters

InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

M	-	an	input	variable	that	represents	the	maximum	index	value	for	each	dimension
of	the	array	passed	to	the	function;	a	single	input	variable	specifies	a	one-
dimensional	array	input,	two	input	variables	specify	a	two-dimensional	(M1	by	M2)
array	input,	three	input	variables	specify	a	three-dimensional	(M1	by	M2	by	M3)
array	input,	etc.

An	input	will	only	accept	an	array	with	the	specified	number	of	dimensions.

Example

Declare	Count	as	a	Passed	by	Reference	one-dimensional	Numerical	Array
function	input:

Input:Count[X](NumericArrayRef);

The	maximum	index	value	for	the	array	passed	to	the	function	will	be	assigned	to
input	variable	X.

Declare	Table	as	a	Passed	by	Reference	three-dimensional	Numerical	Array

333

function	input:

Input:Table[X,Y,Z](NumericArrayRef);

The	maximum	index	value	for	each	dimension	of	the	array	passed	to	the	function
will	be	assigned	to	input	variables	X,	Y,	and	Z.

334

NumericRef
Used	in	function	input	declaration	statements	to	declare	a	Passed	by	Reference
Numerical	input.

Declaring	an	input	as	Passed	by	Reference	enables	the	function	to	modify	the
values	of	variables	passed	as	the	input.

Usage

Input:InputName(NumericRef)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	BarCount	as	a	Passed	by	Reference	Numerical	function	input:

Input:BarCount(NumericRef);

335

NumericSeries
Used	in	function	input	declaration	statements	to	define	an	input	as	a	Numerical
Series.

The	value	of	an	input	defined	as	a	Series	may	vary	from	bar	to	bar	and	can	be
referenced	historically.

Usage

Input:InputName(NumericSeries)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	Price	as	a	Numerical	Series	function	input:

Input:Price(NumericSeries);

336

NumericSimple
Used	in	function	input	declaration	statements	to	define	an	input	as	Numerical
Simple.

The	value	of	an	input	defined	as	Simple	is	constant	from	bar	to	bar	and	thus	has	no
history.

Usage

Input:InputName(NumericSimple)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	Length	as	a	Numerical	Simple	function	input:

Input:Length(NumericSimple);

337

RecalcPersist
Used	in	variable	declaration	statements,	before	a	variable	name,	to	specify	that	the
value	of	the	variable	is	to	be	updated	on	every	tick	and	the	latest	value	of	this
variable	is	to	be	saved	after	the	study	recalculation.

Usage

Declaration:[RecalcPersist]Name(InitialValue1)

Note

This	keyword	can	be	used	only	with	variables.
The	variable	with	such	an	attribute	cannot	be	serial	type.

Example

Declare	Max	as	a	numerical	value,	updated	on	every	tick,	with	initial	value	of	100.

After	study	recalculation,	the	latest	value	of	Max	will	be	saved:

Variable:	RecalcPersist	Max(100);

338

String
Used	in	function	input	declaration	statements	to	define	an	input	as	String.

Input	defined	as	String	can	be	used	both	as	a	String	Simple	as	well	as	a	String
Series	input;	the	value	of	a	Simple	input	is	constant	from	bar	to	bar	and	thus	has	no
history,	while	the	value	of	a	Series	input	may	vary	from	bar	to	bar	and	can	be
referenced	historically.

Usage

Input:InputName(String)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	Name	as	a	String	function	input:

Input:Name(String);

339

StringArray
Used	in	function	input	declaration	statements	to	define	an	input	as	a	String	Array
with	a	specified	number	of	dimensions.

Input	defined	as	String	can	be	used	both	as	a	String	Simple	as	well	as	a	String
Series	input;	the	value	of	a	Simple	input	is	constant	from	bar	to	bar	and	thus	has	no
history,	while	the	value	of	a	Series	input	may	vary	from	bar	to	bar	and	can	be
referenced	historically.

Usage

Input:InputName[M1,M2,M3,etc.](StringArray)

Parameters

InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

M	-	an	input	variable	that	represents	the	maximum	index	value	for	each	dimension
of	the	array	passed	to	the	function;	a	single	input	variable	specifies	a	one-
dimensional	array	input,	two	input	variables	specify	a	two-dimensional	(M1	by	M2)
array	input,	three	input	variables	specify	a	three-dimensional	(M1	by	M2	by	M3)
array	input,	etc.

An	input	will	only	accept	an	array	with	the	specified	number	of	dimensions.

Example

Declare	Messages	as	a	one-dimensional	String	Array	function	input:

Input:Messages[X](StringArray);

The	maximum	index	value	for	the	array	passed	to	the	function	will	be	assigned	to
input	variable	X.

Declare	MessageTable	as	a	three-dimensional	String	Array	function	input:

340

Input:MessageTable[X,Y,Z](StringArray);

The	maximum	index	value	for	each	dimension	of	the	array	passed	to	the	function
will	be	assigned	to	input	variables	X,	Y,	and	Z.

341

StringArrayRef
Used	in	function	input	declaration	statements	to	define	an	input	as	Passed	by
Reference	String	Array	with	a	specified	number	of	dimensions.

Declaring	an	input	as	Passed	by	Reference	enables	the	function	to	modify	the
values	of	variables	passed	as	the	input.

Usage

Input:InputName[M1,M2,M3,etc.](StringArrayRef)

Parameters

InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

M	-	an	input	variable	that	represents	the	maximum	index	value	for	each	dimension
of	the	array	passed	to	the	function;	a	single	input	variable	specifies	a	one-
dimensional	array	input,	two	input	variables	specify	a	two-dimensional	(M1	by	M2)
array	input,	three	input	variables	specify	a	three-dimensional	(M1	by	M2	by	M3)
array	input,	etc.

An	input	will	only	accept	an	array	with	the	specified	number	of	dimensions.

Example

Declare	Messages	as	a	Passed	by	Reference	one-dimensional	String	Array	function
input:

Input:Messages[X](StringArrayRef);

The	maximum	index	value	for	the	array	passed	to	the	function	will	be	assigned	to
input	variable	X.

Declare	CommentsTable	as	a	Passed	by	Reference	three-dimensional	String	Array

342

function	input:

Input:CommentsTable[X,Y,Z](StringArrayRef);

The	maximum	index	value	for	each	dimension	of	the	array	passed	to	the	function
will	be	assigned	to	input	variables	X,	Y,	and	Z.

343

StringRef
Used	in	function	input	declaration	statements	to	declare	a	Passed	by	Reference
String	input.

Declaring	an	input	as	Passed	by	Reference	enables	the	function	to	modify	the
values	of	variables	passed	as	the	input.

Usage

Input:InputName(StringRef)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	Message	as	a	Passed	by	Reference	String	function	input:

Input:Message(StringRef);

344

StringSeries
Used	in	function	input	declaration	statements	to	define	an	input	as	String	Series.

The	value	of	an	input	defined	as	a	Series	may	vary	from	bar	to	bar	and	can	be
referred	to	historically.

Usage

Input:InputName(StringSeries)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	Messages	as	a	String	Series	function	input:

Input:Messages(StringSeries);

345

StringSimple
Used	in	function	input	declaration	statements	to	define	an	input	as	String	Simple.

The	value	of	an	input	defined	as	Simple	is	constant	from	bar	to	bar	and	thus	has	no
history.

Usage

Input:InputName(StringSimple)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	Name	as	a	String	Simple	function	input:

Input:Name(StringSimple);

346

TrueFalse
Used	in	function	input	declaration	statements	to	define	an	input	as	true/false.

Input	defined	as	true/false	can	be	used	both	as	a	true/false	Simple	as	well	as	a
true/false	Series	input;	the	value	of	a	Simple	input	is	constant	from	bar	to	bar	and
thus	has	no	history,	while	the	value	of	a	Series	input	may	vary	from	bar	to	bar	and
can	be	referenced	historically.

Usage

Input:InputName(TrueFalse)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	Overnight	as	a	true/false	function	input:

Input:Overnight(TrueFalse);

347

TrueFalseArray
Used	in	function	input	declaration	statements	to	define	an	input	as	a	true/false	Array
with	a	specified	number	of	dimensions.

Input	defined	as	true/false	can	be	used	both	as	a	true/false	Simple	as	well	as	a
true/false	Series	input;	the	value	of	a	Simple	input	is	constant	from	bar	to	bar	and
thus	has	no	history,	while	the	value	of	a	Series	input	may	vary	from	bar	to	bar	and
can	be	referenced	historically.

Usage

Input:InputName[M1,M2,M3,etc.](TrueFalseArray)

Parameters

InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

M	-	an	input	variable	that	represents	the	maximum	index	value	for	each	dimension
of	the	array	passed	to	the	function;	a	single	input	variable	specifies	a	one-
dimensional	array	input,	two	input	variables	specify	a	two-dimensional	(M1	by	M2)
array	input,	three	input	variables	specify	a	three-dimensional	(M1	by	M2	by	M3)
array	input,	etc.

An	input	will	only	accept	an	array	with	the	specified	number	of	dimensions.

Example

Declare	UpTrend	as	a	one-dimensional	true/false	Array	function	input:

Input:UpTrend[X](TrueFalseArray);

The	maximum	index	value	for	the	array	passed	to	the	function	will	be	assigned	to
input	variable	X.

348

Declare	FlagTable	as	a	three-dimensional	true/false	Array	function	input:

Input:FlagTable[X,Y,Z](TrueFalseArray);

The	maximum	index	value	for	each	dimension	of	the	array	passed	to	the	function
will	be	assigned	to	input	variables	X,	Y,	and	Z.

349

TrueFalseArrayRef
Used	in	function	input	declaration	statements	to	define	an	input	as	Passed	by
Reference	true/false	Array	with	a	specified	number	of	dimensions.

Declaring	an	input	as	Passed	by	Reference	enables	the	function	to	modify	the
values	of	variables	passed	as	the	input.

Usage

Input:InputName[M1,M2,M3,etc.](TrueFalseArrayRef)

Parameters

InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

M	-	an	input	variable	that	represents	the	maximum	index	value	for	each	dimension
of	the	array	passed	to	the	function;	a	single	input	variable	specifies	a	one-
dimensional	array	input,	two	input	variables	specify	a	two-dimensional	(M1	by	M2)
array	input,	three	input	variables	specify	a	three-dimensional	(M1	by	M2	by	M3)
array	input,	etc.

An	input	will	only	accept	an	array	with	the	specified	number	of	dimensions.

Example

Declare	Trend	as	a	Passed	by	Reference	one-dimensional	true/false	Array	function
input:

Input:Trend[X](TrueFalseArrayRef);

The	maximum	index	value	for	the	array	passed	to	the	function	will	be	assigned	to
input	variable	X.

Declare	TrendTable	as	a	Passed	by	Reference	three-dimensional	true/false	Array

350

function	input:

Input:TrendTable[X,Y,Z](TrueFalseArrayRef);

The	maximum	index	value	for	each	dimension	of	the	array	passed	to	the	function
will	be	assigned	to	input	variables	X,	Y,	and	Z.

351

TrueFalseRef
Used	in	function	input	declaration	statements	to	declare	a	Passed	by	Reference
true/false	input.

Declaring	an	input	as	Passed	by	Reference	enables	the	function	to	modify	the
values	of	variables	passed	as	the	input.

Usage

Input:InputName(TrueFalseRef)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	Flag	as	a	Passed	by	Reference	true/false	function	input:

Input:Flag(TrueFalseRef);

352

TrueFalseSeries
Used	in	function	input	declaration	statements	to	define	an	input	as	a	true/false
Series.

The	value	of	an	input	defined	as	a	Series	may	vary	from	bar	to	bar	and	can	be
referenced	historically.

Usage

Input:InputName(TrueFalseSeries)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	UpTrend	as	a	true/false	Series	function	input:

Input:UpTrend(TrueFalseSeries);

353

TrueFalseSimple
Used	in	function	input	declaration	statements	to	define	an	input	as	true/false	Simple.

The	value	of	an	input	defined	as	Simple	is	constant	from	bar	to	bar	and	thus	has	no
history.

Usage

Input:InputName(TrueFalseSimple)

Where:	InputName	-	an	expression	specifying	the	input	name

The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

Example

Declare	Overnight	as	a	true/false	Simple	function	input:

Input:Overnight(TrueFalseSimple);

354

Var
Same	as	the	Variable

355

Variable
Declares	one	or	more	names	as	variables;	specifies	the	initial	value,	variable	type,
update	basis,	and	data	number	for	each	variable.

Variables	can	be	numerical,	string,	or	true/false.

Usage

Variable:[IntraBarPersist]VariableName1(InitialValue1[,DataN]),
[IntraBarPersist]VariableName2(InitialValue2[,DataN]),etc.

Parameters	inside	the	square	brackets	are	optional

Parameters

IntraBarPersist	-	an	optional	parameter;	specifies	that	the	value	of	the	variable	is
to	be	updated	on	every	tick	
If	this	parameter	is	not	specified,	the	value	will	be	updated	at	the	close	of	each	bar.

VariableName	-	an	expression,	specifying	the	variable	name	
The	name	can	consist	of	letters,	underscore	characters,	numbers,	and	periods.

The	name	cannot	begin	with	a	number	or	a	period	and	is	not	case-sensitive.

InitialValue	-	an	expression,	specifying	the	initial	value	and	defining	the	variable
type	
The	value	can	be	a	numerical,	string,	or	true/false	expression;	the	type	of	the
expression	defines	the	variable	type.

DataN	-	an	optional	parameter;	specifies	the	Data	Number	of	the	data	series	the
variable	is	to	be	tied	to	
If	this	parameter	is	not	specified,	the	variable	will	be	tied	to	the	default	data	series.

Example

Declare	Avg.	as	a	numerical	variable	with	the	initial	value	of	20:

Variable:Avg.(20);	

356

Declare	Max	as	a	numerical	variable,	updated	on	every	tick,	with	the	initial	value	of
100:

Variable:IntraBarPersist	Max(100);	

Declare	Min_Price	as	a	numerical	variable,	tied	to	the	series	with	Data	#2,	and	the
initial	value	equal	to	the	value	of	Close	function:

Variable:Min_Price(Close,Data2);	

Declare	Overnight	as	a	true/false	variable	with	the	initial	value	of	False,	and	Name
as	a	string	variable	with	the	initial	value	of	"Intra-Day":

Variable:Overnight(False),Name("Intra-Day");

357

Variables
Same	as	the	Variable

358

Vars
Same	as	the	Variable

359

ArraySize
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

360

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

ArrayStartAddr
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

361

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

Bool
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

362

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

Byte
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

363

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

Char
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

364

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

DefineDLLFunc
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

365

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

Double
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

366

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

DWORD
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

367

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

External
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

368

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

Float
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

369

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

iEasyLanguageObject
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

370

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

Int
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

371

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

Int64
The	int64	is	a	reserved	word	defining	that	the	passed	or	returned	value	of	functions
exported	from	the	dll	has	the	long	long	type	(64-bit	representation	of	an	integer).

Note

Due	to	architectural	specifics	of	PowerLanguage,	before	passing	the	long	long	type
value	in	a	dll	(or	when	the	values	were	returned	from	a	dll)	it	is	converted	from	the
"double"	type	(or	into	"double"	type).	Note	that	precision	of	the	double	type	values
is	15	decimals.	(Values	range	of	the	long	long	type	is	from
-9,223,372,036,854,775,808	to	9,223,372,036,854,775,807	-	19	decimal	points).	It
means	that	without	loss	of	accuracy	the	values	with	the	range	from
-999,999,999,999,999	to	999,999,999,999,999	will	be	passed.

Example

Defines	the	dll	function,	which	receives	long	long	parameter:

DEFINEDLLFUNC:"test_int64.dll",void,"int64test_1",int64;

Defines	the	dll	function,	which	returns	long	long	value:

DEFINEDLLFUNC:"test_int64.dll",int64,"int64test_2";

372

Long
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

373

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

LPBool
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

374

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

LPByte
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

375

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

LPDouble
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

376

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

LPDWORD
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

377

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

LPFloat
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

378

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

LPInt
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

379

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

LPLong
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

380

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

LPSTR
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

381

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

LPWORD
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

382

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

Method
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

383

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

OnCreate
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

384

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

OnDestroy
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

385

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

Self
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

386

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

ThreadSafe
Declares	the	function	imported	from	DLL	as	thread-safe.

It	will	increase	the	performance	of	calculation	and	optimization	of	the	studies	that
use	external	DLLs.

Usage

ThreadSafe

Notes

It	is	not	recommended	to	apply	ThreadSafe	attribute	to	the	functions	exported	from
elkit32.dll	(for	example	FindAddress_).

Example

DEFINEDLLFUNC:	ThreadSafe,	"user32.dll",	Void,	"MessageBeep",	Int;

Will	declare	MessageBeep	function	of	user32.dll	as	thread-safe.

387

Unsigned
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

388

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

VarSize
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

389

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

VarStartAddr
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

390

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

Void
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

391

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

WORD
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

392

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

#Events
Supported	by	PowerLanguage.

A	detailed	description	and	usage	examples	have	been	published	by	TradeStation
Technologies:	EasyLanguage	Extension	SDK

393

https://developer.tradestation.com/documents/EasyLanguage_Extension_SDK.pdf

DOM_AskPrice
Returns	ask	price	for	the	certain	depth	level	of	a	particular	symbol.

Usage

DOM_AskPrice(num)	[Data(N)]

where:

(num)	-	is	the	number	of	depth	level

(N)	-	is	the	number	of	the	data	series

Example

DOM_AskPrice(4);	will	return	the	ask	price	for	the	5th	level	of	depth	for	the	Data1

DOM_AskPrice(2)	Data2;	will	return	the	ask	price	for	the	3rd	level	of	depth	for	the
Data2

394

DOM_AsksCount
Returns	the	number	of	ask	depth	levels	available	for	a	particular	symbol.

Usage

DOM_AsksCount	[Data(N)]

where:

(N)	-	is	the	number	of	the	data	series

Example

DOM_AsksCount	will	return	10	if	10	ask	levels	of	the	market	depth	are	available	for
the	Data1

DOM_AsksCount	Data2	will	return	6	if	6	ask	levels	of	the	market	depth	are	available
for	the	Data2

395

DOM_AskSize
Returns	the	ask	size	for	the	certain	depth	level	of	a	particular	symbol.

Usage

DOM_AskSize(num)	[Data(N)]

where:

(num)	-	is	the	number	of	depth	level

(N)	-	is	the	number	of	the	data	series

Example

DOM_AskSize(2)	will	return	1500	if	the	ask	size	for	the	3rd	level	of	depth	on	Data1
is	1500

DOM_AskSize(0)	Data2	will	return	750	if	the	ask	size	for	the	1st	level	of	depth	on
Data2	is	750

396

DOM_BidPrice
Returns	bid	price	for	the	certain	depth	level	of	a	particular	symbol.

Usage

DOM_BidPrice(num)	[Data(N)]

where:

(num)	-	is	the	number	of	depth	level

(N)	-	is	the	number	of	the	data	series

Example

DOM_BidPrice(4);	will	return	the	bid	price	for	the	5th	level	of	depth	for	the	Data1

DOM_BidPrice(2)	Data2;	will	return	the	bid	price	for	the	3rd	level	of	depth	for	the
Data2

397

DOM_BidsCount
Returns	the	number	of	bid	depth	levels	available	for	a	particular	symbol.

Usage

DOM_BidsCount	[Data(N)]

where:

(N)	-	is	the	number	of	the	data	series

Example

DOM_BidsCount	will	return	10	if	10	bid	levels	of	the	market	depth	are	available	for
the	Data1

DOM_BidsCount	Data2	will	return	6	if	6	bid	levels	of	the	market	depth	are	available
for	the	Data2

398

DOM_BidSize
Returns	the	bid	size	for	the	certain	depth	level	of	a	particular	symbol.

Usage

DOM_BidSize(num)	[Data(N)]

where:

(num)	-	is	the	number	of	depth	level

(N)	-	is	the	number	of	the	data	series

Example

DOM_BidSize(2)	will	return	1500	if	the	bid	size	for	the	3rd	level	of	depth	on	Data1
is	1500

DOM_BidSize(0)	Data2	will	return	750	if	the	bid	size	for	the	1st	level	of	depth	on
Data2	is	750

399

DOM_IsConnected
Returns	a	logical	value	indicating	the	availability	of	the	market	depth	data;	returns	a
value	of	True	if	the	market	depth	data	is	available	and	a	value	of	False	if	the
market	depth	data	is	not	available.

Usage

DOM_IsConnected

Example

Print	the	ask	size	for	the	1st	level	of	market	depth	if	the	market	depth	data	is
available

Variables:

var0(0);

If	DOM_IsConnected	then

var0	=	DOM_AskPrice(0);

Print(var0);

400

Array_Compare
Compares	a	specified	range	of	elements	of	the	specified	one-dimensional	source
array,	starting	at	the	specified	source	index,	to	the	same	range	of	elements	of	the
specified	one-dimensional	destination	array,	starting	at	the	specified	destination
index.

Source	and	destination	can	be	the	same	array	as	well	as	two	different	arrays.

For	numerical	arrays,	the	numerical	values	for	each	pair	of	elements	are
compared.	For	string	arrays,	the	ASCII	values	of	the	string	characters,	with	the	first
character	of	the	string	being	the	most	significant,	are	compared	for	each	pair	of
elements.	For	true/false	arrays,	the	logical	values	of	each	pair	of	elements	are
compared,	with	the	value	of	true	considered	to	be	greater	than	the	value	of	false.

Returns	a	value	of	0	if	each	respective	pair	of	elements	compared	as	equal;	a	value
of	1	if,	for	the	first	pair	that	was	not	equal,	the	value	in	the	source	range	was
greater	then	the	value	in	the	destination	range;	and	a	value	of	-1	if,	for	the	first	pair
that	was	not	equal,	the	value	in	the	source	range	was	less	then	the	value	in	the
destination	range.

Usage

Array_Compare(SourceArray,SourceIndex,DestinationArray,DestinationIndex,NumberOfElements

Where:	SourceArray	-	an	expression	specifying	the	name	of	the	source	array	
													DestinationArray	-	an	expression	specifying	the	name	of	the	destination	array	
													SourceIndex	-	a	numerical	expression	specifying	the	starting	index	for	the	source	array	
													DestinationIndex	-	a	numerical	expression	specifying	the	starting	index	for	the	destination
array	
													NumberOfElements	-	a	numerical	expression	specifying	the	number	of	elements	to	compare

Return

		0	-	each	respective	pair	of	elements	compared	as	equal	
		1	-	for	the	first	pair	compared	that	was	not	equal,	the	value	in	the	source	range	was	greater	then	the
value	in	the	destination	range	
-1	-	for	the	first	pair	compared	that	was	not	equal,	the	value	in	the	source	range	was	less	then	the
value	in	the	destination	range

401

Example

Assign	a	value,	indicating	the	result	of	comparing	two-element	segments,	of
Array1,	beginning	at	the	index	of	4,	and	of	Array2,	beginning	at	the	index	of	6,	to
Value1	variable:

Value1=Array_Compare(Array1,4,Array2,6,2);	

Assign	a	value,	indicating	the	result	of	comparing	two-element	segments	that	begin
at	the	index	of	4	and	at	the	index	of	6	within	the	same	array,	to	Value1	variable:

Value1=Array_Compare(Array1,4,Array1,6,2);

402

Array_Contains
Will	return	True/False	value	depending	on	whether	specific	element	is	contained	in
the	one-dimensional	array,	or	not.

Usage

Array_Contains(ArrayName,Value)

Where:	ArrayName	-	an	expression	specifying	the	name	of	an
numerical/string/bool	array.	
													Value	-	a	numerical/string/bool	expression	specifying	the	value	to	search.

Example

Assign	a	true/false	value,	indicating	that	value	4	is	contained	in	the	numeric	array
Array1,	to	Condition1	variable:

Condition1=Array_Contains(Array1,4);

403

Array_Copy
Copies	a	specified	number	of	elements	from	the	specified	one-dimensional	source
array,	starting	at	the	specified	source	index;	the	elements	are	copied	to	the	specified
one-dimensional	destination	array,	starting	at	the	specified	destination	index.

Source	and	destination	can	be	the	same	array	as	well	as	two	different	arrays.

Usage

Array_Copy(SourceArray,SourceIndex,DestinationArray,DestinationIndex,NumberOfElements

Where:	SourceArray	-	an	expression	specifying	the	name	of	the	source	array	
													DestinationArray	-	an	expression	specifying	the	name	of	the	destination	array	
													SourceIndex	-	a	numerical	expression	specifying	the	starting	index	for	the	source	array	
													DestinationIndex	-	a	numerical	expression	specifying	the	starting	index	for	the
destination	array	
													NumberOfElements	-	a	numerical	expression	specifying	the	number	of	elements	to	copy

Example

Copy	from	Array1	the	two-element	segment	beginning	at	the	index	of	4,	to	the
Array2,	beginning	at	the	index	of	6:

Array_Copy(Array1,4,Array2,6,2);	

Copy	from	Array1	the	two-element	segment	beginning	at	the	index	of	4,	to	the
same	array,	beginning	at	the	index	of	6:

Array_Copy(Array1,4,Array1,6,2);

404

Array_GetBooleanValue

Returns	the	Boolean	value	with	a	certain	index	from	numerical	array.

Usage

Array_GetBooleanValue

Example

Assign	the	second	Boolean	value	of	the	"arr"	array	to	Value1	variable:

Array:	arr[10](0);	
Value1	=	Array_GetBooleanValue	(arr,	2);

405

Array_GetFloatValue

Returns	the	float	value	with	a	certain	index	from	numerical	array.

Usage

Array_GetFloatValue

Example

Assign	the	second	float	value	of	arr	array	to	Value1	variable:

Array:	arr[10](0);	
Value1	=	Array_GetFloatValue	(arr,	2);

406

Array_GetIntegerValue

Returns	the	integer	value	with	a	certain	index	from	numerical	array.

Usage

Array_GetIntegerValue

Example

Assign	the	second	float	value	of	"arr"	array	to	Value1	variable:

Array:	arr[10](0);	
Value1	=	Array_GetIntegerValue	(arr,	2);

407

Array_GetMaxIndex
Returns	a	numerical	value	indicating	the	maximum	index	of	a	one-dimensional
array.

Array	indexes	start	at	0,	and	array	size	is	equal	to	the	value	of	the	maximum	index
plus	one.

Usage

Array_GetMaxIndex(ArrayName)

Where:	ArrayName	-	an	expression	specifying	the	name	of	an	array

Example

Assign	a	value	that	indicates	the	maximum	index	of	Array1	to	the	MaxIndex
variable:

MaxIndex=Array_GetMaxIndex(Array1);

408

Array_GetStringValue

Returns	the	string	value	with	a	certain	index	from	numerical	array.

Usage

Array_GetStringValue

Example

Assign	the	second	float	value	of	"arr"	array	to	Value1	variable:

Array:	arr[10](0);	
Value1	=	Array_GetStringValue	(arr,	2);

409

Array_GetType
Returns	a	numerical	value	indicating	the	type	of	the	specified	array.

Usage

Array_GetType(ArrayName)

Where:	ArrayName	-	an	expression	specifying	the	name	of	an	array

Return

2	-	a	true/false	array
3	-	a	string	array
7	-	a	double-precision	numerical	array

Example

Assign	a	value,	indicating	the	type	of	Array1,	to	Value1	variable:

Value1=Array_GetType(Array1);

410

Array_IndexOf
Will	return	index	of	a	specific	element	in	one-dimensional	array.	Will	return	-1	if
the	array	will	not	contain	the	specific	element.

Usage

Array_IndexOf(ArrayName,Value)

Where:	ArrayName	-	an	expression	specifying	the	name	of	an
numerical/string/bool	array.	
													Value	-	a	numerical/string/bool	expression	specifying	the	value	to	search
for.

Example

Assign	an	index	of	value	4	to	Value1	variable	in	the	numeric	array	Array1:

Value1=Array_IndexOf(Array1,4);

411

Array_SetBooleanValue

Sets	the	Boolean	value	for	a	certain	index	of	numerical	array.

Usage

Array_SetBooleanValue

Example

Set	the	first	and	third	values	of	"arr"	array	to	TRUE:

Array:	arr[10](False);	
Array_SetBooleanValue	(arr,	1,	True);	
Array_SetBooleanValue	(arr,	1,	True);

412

Array_SetFloatValue

Sets	the	float	value	for	a	certain	index	of	numerical	array.

Usage

Array_SetFloatValue

Example

Set	the	first	and	third	values	of	"arr"	array	to	1.789:

Array:	arr[10](False);	
Array_SetFloatValue	(arr,	1,	1.789000352);	
Array_SetFloatValue	(arr,	3,	1.789000352);

413

Array_SetIntegerValue

Sets	the	integer	value	for	a	certain	index	of	numerical	array.

Usage

Array_SetIntegerValue

Example

Set	the	first	and	third	values	of	"arr"	array	to	500:

Array:	arr[10](False);	
Array_SetIntegerValue	(arr,	1,	500);	
Array_SetIntegerValue	(arr,	3,	500);

414

Array_SetMaxIndex
Resizes	a	declared	dynamic	array	to	a	specified	number	of	elements;	returns	a
value	of	True	to	indicate	a	successful	resize.

An	array	can	be	resized	to	a	larger	or	to	a	smaller	number	of	elements;	any
elements	added	to	an	array	will	be	assigned	the	initial	value	that	was	specified	at
array	declaration.

Usage

Array_SetMaxIndex(ArrayName,MaxIndex)

Where:	ArrayName	-	an	expression	specifying	the	name	of	an	array	to	be	resized	
													MaxIndex	-	a	numerical	expression	specifying	the	maximum	index	of	the
array*

*Array	indexes	start	at	0,	and	array	size	is	equal	to	the	value	of	MaxIndex	plus	one.

Return

True	-	resize	sucessfull

False	-	resize	failed

Example

Resize	the	dynamic	array	Array1	to	10	elements	by	specifying	a	maximum	index
value	of	9:

Array_SetMaxIndex(Array1,9);	

Assign	a	value	that	indicates	a	status	of	the	resize	of	Array1	to	the	ResizeReport
variable:

ResizeReport=Array_SetMaxIndex(Array1,9);

A	value	of	True	will	indicate	a	successful	resize,	and	a	value	of	False	will	indicate	a
failed	resize.

415

416

Array_SetStringValue

Sets	the	string	value	for	a	certain	index	of	numerical	array.

Usage

Array_SetStringValue

Example

Set	the	first	and	third	values	of	"arr"	array	to	"array	string":

Array:	arr[10](False);	
Array_SetStringValue	(arr,	1,	"array	string");	
Array_SetStringValue	(arr,	3,	"array	string");

417

Array_SetValRange
Assigns	a	specified	value	to	each	element	within	a	specified	range,	of	the	specified
one-dimensional	array.

Usage

Array_SetValRange(ArrayName,StartIndex,EndIndex,Value)

Where:	ArrayName	-	an	expression	specifying	the	name	of	an	array	
													StartIndex	-	a	numerical	expression	specifying	the	starting	index	for	the
range	
													EndIndex	-	a	numerical	expression	specifying	the	ending	index	for	the
range	
													Value	-	a	value	to	be	assigned	to	each	element	within	the	range

Example

Assign	a	value	of	True	to	each	element	within	a	segment,	beginning	at	index	4	and
ending	at	index	6,	of	Array1:

Array_SetValRange(Array1,4,6,True);

418

Array_Sort
Sorts,	in	either	ascending	or	descending	order,	the	range	of	elements,	specified	by
the	starting	and	ending	indexes,	of	the	specified	one-dimensional	array.

For	numerical	arrays,	the	elements	are	sorted	according	to	the	values	they	contain.
For	string	arrays,	the	elements	are	sorted	according	to	the	ASCII	values	of	the
string	characters,	with	the	first	character	of	the	string	being	the	most	significant.
For	sorting	true/false	array	elements,	the	value	of	true	is	considered	to	be	greater
than	the	value	of	false.

Usage

Array_Sort(ArrayName,StartIndex,EndIndex,SortOrder)

Where:	ArrayName	-	an	expression	specifying	the	name	of	an	array	
													StartIndex	-	a	numerical	expression	specifying	the	starting	index	for	the
range	
													EndIndex	-	a	numerical	expression	specifying	the	ending	index	for	the
range	
													SortOrder	-	a	true/false	value	specifying	the	sort	order;	true	specifies
ascending	order,	and	false	specifies	descending	order

Example

Sort	the	elements	in	the	segment	of	Array1	that	begins	at	the	index	of	4	and	ends	at
the	index	of	6,	in	ascending	order:

Array_Sort(Array1,4,6,True);

419

Array_Sum
Returns	a	sum	of	the	values	contained	in	a	range	of	elements,	specified	by	the
starting	and	ending	indexes,	of	the	specified	one-dimensional	array;	returns	the
number	of	true	elements	if	the	array	contains	true/false	values;	returns	a	value	of	0
if	the	array	contains	string	values.

Usage

Array_Sum(ArrayName,StartIndex,EndIndex)

Where:	ArrayName	-	an	expression	specifying	the	name	of	an	array	
													StartIndex	-	a	numerical	expression	specifying	the	starting	index	for	the
range	
													EndIndex	-	a	numerical	expression	specifying	the	ending	index	for	the
range

Example

Assign	a	value,	indicating	a	sum	of	the	values	contained	in	the	segment	of	Array1
that	begins	at	the	index	of	4	and	ends	at	the	index	of	6,	to	Value1	variable:

Value1=Array_Sum(Array1,4,6);

420

Fill_Array

Assigns	a	specified	value	to	each	element	of	the	specified	one-dimensional	array.

Usage

Fill_Array(ArrayName,Value)

Where:	ArrayName	-	an	expression	specifying	the	name	of	an	array	
													Value	-	a	value	to	be	assigned	to	each	element	of	the	array

Example

Assign	a	value	of	True	to	each	element	of	Array1:

Fill_Array(Array1,True);

421

BaseDataNumber

Returns	a	numerical	value	indicating	the	Data	Number	of	the	series	that	the	study	is
applied	to.

Usage

BaseDataNumber

Example

Assign	a	value,	indicating	the	Data	Number	of	the	series	that	the	study	is	applied	to,
to	Value1	variable:

Value1=BaseDataNumber;

422

CurrentDataNumber

Returns	a	numerical	value	indicating	the	Data	Number	of	the	series	that	the	function
is	being	calculated	on.

Usage

CurrentDataNumber

Example

Assign	a	value,	indicating	the	Data	Number	of	the	series	that	the	function	is	being
calculated	on,	to	Value1	variable:

Value1=CurrentDataNumber;

423

ExecOffset

Returns	a	numerical	value	indicating	the	function	execution	offset	in	bars.

Usage

ExecOffset

Example

Assign	a	value,	indicating	the	function	execution	offset,	to	Value1	variable:

Value1=ExecOffset;

424

GetAppInfo
Returns	a	numerical	value,	representing	the	specified	attribute	of	the	calling
application.

Usage

GetAppInfo(Attribute)

Parameters

aiApplicationType	-	identifies	the	calling	application:

						0	=	Unknown

						1	=	Chart

						2	=	Scanner

aiBarSpacing	-	specifies	return	of	the	number	of	spaces	between	the	bars	on	a
chart	GetAppInfo	will	return	a	value,	indicating	the	bar	spacing	of	a	chart.

aiCalcReason	-	returns	a	numerical	value,	indicating	the	reason	of	calculation
initialization	(i.e.	returns	0	(CalcReason_Default)	when	calculation	was	triggered
by	a	new	bar/tick):

						0	(CalcReason_default)	-	calculation	is	to	be	initialized	when	the	new
bar/tick	appeared.

						1	(CalcReason_mouseLClick)		calculation	is	to	be	initialized	after	left-click
on	the	chart.

						2	(CalcReason_mouseRClick)	-	calculation	is	to	be	initialized	after	right-click
on	the	chart.

						3	(CalcReason_timer)		calculation	is	to	be	initialized	after	expiration	of
RecalcLastBarAfter	timeout.

						4	(CalcReason_MPChange)		calculation	is	to	be	initialized	after	market
position	for	the	instrument	has	been	changed	(for	signals	only).

425

						5	(CalcReason_OrderFilled)		calculation	is	to	be	initialized	after	order	filled
event	(for	signals	only).

aiHighestDispValue	-	specifies	return	of	the	highest	price	value	that	could	be
displayed	in	the	current	chart	window	GetAppInfo	will	return	the	highest	price
value	that	could	be	displayed	on	a	chart.

aiLowestDispValue	-	specifies	return	of	the	lowest	price	value	that	could	be
displayed	in	the	current	chart	window	GetAppInfo	will	return	the	lowest	price	value
that	could	be	displayed	on	a	chart.

aiLeftDispDateTime	-	specifies	return	of	the	date	and	time	of	the	leftmost	bar
displayed	in	the	current	chart	window	GetAppInfo	will	return	the	DateTime	value
of	the	leftmost	bar	displayed	on	a	chart;	the	integer	portion	of	the	DateTime	value
specifies	the	number	of	days	since	January	1st,	1900,	and	the	fractional	portion	of
the	DateTime	value	specifies	the	fraction	of	the	day	since	midnight.

aiRightDispDateTime	-	specifies	return	of	the	date	and	time	of	the	rightmost	bar
displayed	in	the	current	chart	window	GetAppInfo	will	return	the	DateTime	value
of	the	rightmost	bar	displayed	on	a	chart;	the	integer	portion	of	the	DateTime	value
specifies	the	number	of	days	since	January	1st,	1900,	and	the	fractional	portion	of
the	DateTime	value	specifies	the	fraction	of	the	day	since	midnight.

aiRow	-	identifies	the	symbol's	row	number	in	Scanner;	returns	a	positive	non-zero
value	from	a	Scanner	application	else	returns	0.

aiSpaceToRight	-	specifies	return	of	the	right	margin,	in	bars,	of	the	current	chart
window	GetAppInfo	will	return	the	right	margin,	in	bars,	of	a	chart.

aiOptimizing	-	specifies	return	of	a	numerical	value,	indicating	whether	the
calling	application	is	currently	performing	an	optimization	GetAppInfo	will	return
a	value	of	1	only	if	the	calling	application	is	currently	performing	an	optimization,
and	a	value	of	0	in	all	other	cases.

aiStrategyAuto	-	specifies	return	of	a	numerical	value,	indicating	whether	the
calling	application	is	using	Automated	Trade	Execution	GetAppInfo	will	return	a
value	of	1	only	if	the	calling	application	is	using	Automated	Trade	Execution,	and	a
value	of	0	in	all	other	cases.

aiStrategyAutoConf	-	specifies	return	of	a	numerical	value,	indicating	whether
the	calling	application	is	using	Automated	Trade	Execution	with	order
confirmation	turned	off	GetAppInfo	will	return	a	value	of	0	only	if	the	calling

426

application	is	using	Automated	Trade	Execution	with	order	confirmation	turned
off,	and	a	value	of	1	in	all	other	cases.

aiIntrabarOrder	-	specifies	return	of	a	numerical	value,	indicating	whether	the
calling	application	is	running	the	signal	with	intra-bar	order	generation	turned	on
GetAppInfo	will	return	a	value	of	1	only	if	the	calling	application	is	running	the
signal	with	intra-bar	order	generation	turned	on,	and	a	value	of	0	in	all	other	cases.

aiAppId	-	specifies	return	of	a	numerical	value,	used	to	identify	the	calling
application	GetAppInfo	will	return	a	unique	non-zero	integer	identifying	the
calling	application.

aiRealTimeCalc	-	specifies	return	of	a	numerical	value,	indicating	whether	the
calling	applications	calculations	are	based	on	real-time	data	GetAppInfo	will	return
a	value	of	1	only	if	the	calling	application's	calculations	are	based	on	real-time
data,	and	a	value	of	0	in	all	other	cases.

aichartshiftpercent	-	returns	the	ChartShift	value	in	percents	from	Format
Window	->	X	-	Time	Scale.	The	value	is	updated	on	the	fly.

Example

GetAppInfo(aiBarSpacing)	will	return	a	value,	indicating	the	bar	spacing	of	a
chart

GetAppInfo(aiStrategyAutoConf)	will	return	a	value	of	0	if	the	calling
application	is	using	Automated	Trade	Execution	with	order	confirmation	turned
off;	otherwise,	will	return	a	value	of	1

GetAppInfo(aiRealTimeCalc)	will	return	a	value	of	1	if	the	calling	applications
calculations	are	based	on	real-time	data;	otherwise,	will	return	a	value	of	0

[ProcessMouseEvents	=	true];	
switch	(getappinfo(aicalcreason))	begin	
				case	CalcReason_MouseLClick	:	if	MouseClickCtrlPressed	then	begin	
				var:	var0(0),	var1(0);	
								repeat	
												if	0	=	var0	then	begin	
												var0	=	MouseClickDateTime;	
												break;	
												end;	

427

								until(false);	
				end;	
end;	
var1	=	datetime2eltime(var0);	
print("Time	of	the	Bar	=	",	var1);

Will	return	the	time	of	the	bar	after	left	click	on	it	pressing	Ctrl	button	on	the
keyboard.

428

GetCDRomDrive

Returns	a	string	expression	of	the	drive	letter	for	the	first	CD-ROM	drive	detected.

Usage

GetCDRomDrive

Example

Variables:	Drive("D");
Drive	=	GetCDRomDrive;

Will	set	the	variable	Drive	equal	to	the	first	CD-ROM	drive	detected.

429

GetCountry
Returns	the	locale	name,	corresponding	to	the	Standards	and	formats	setting
selected	in	the	Regional	Options	settings	of	the	Windows	XP	Control	Panel.

Usage

GetCountry

Example

GetCountry		will	return	a	string	expression	"United	States"	for	the	setting	"English
(United	States)"

430

GetCurrency
Returns	the	currency	symbol	selected	in	the	Regional	Options	settings	of	the
Windows	XP	Control	Panel.

Usage

GetCurrency

Example

GetCurrency		will	return	the	"$"	symbol	for	the	US	Dollar

431

GetUserID

Returns	a	unique	identification	number	(UserID)	for	the	PC	that	the	study	is	being
run	on.

UserID	number	is	used	for	study	protection.

Usage

GetUserID

Example

Assign	a	value,	indicating	the	UserID,	to	Value1	variable:

Value1=GetUserID;

432

GetUserName
Returns	MultiCharts	registration	name	(UserName)	for	MultiCharts	installation	on
the	PC	that	the	study	is	being	run	on.

UserName	is	used	for	study	protection.

Usage

GetUserName

Example

Assign	a	value,	indicating	the	UserName,	to	UserName	variable:

Var:	UserName("");

UserName	=	GetUserName;

433

MaxBarsBack

Returns	a	numerical	value	indicating	the	Maximum	Bars	Back	setting	for	the	study.

All	studies	based	on	past	data	use	a	certain	number	of	bars	for	their	calculations.
The	number	of	bars	is	called	Maximum	number	of	bars	a	study	will	reference,	or
Maximum	Bars	Back.

Usage

MaxBarsBack

Example

Assign	a	value,	indicating	the	Maximum	Bars	Back	setting	for	the	study,	to	Value1
variable:

Value1=MaxBarsBack;

434

MaxBarsForward

Returns	a	numerical	value	indicating	the	size,	in	bars,	of	the	right	margin	on	the
chart.

Right	margin	is	used	by	the	studies	that	visualize	the	predicted	price	movement.

Usage

MaxBarsForward

Example

Assign	a	value,	indicating	the	size	of	the	right	margin	of	the	chart,	to	Value1
variable:

Value1=MaxBarsForward;

435

SetMaxBarsBack

Sets	a	numerical	value	indicating	the	Maximum	Bars	Back	setting	for	the	study.

All	studies	based	on	past	data	use	a	certain	number	of	bars	for	their	calculations.

The	number	of	bars	is	called	Maximum	number	of	bars	a	study	will	reference,	or
Maximum	Bars	Back.

Usage

SetMaxBarsBack(BarsBack)

Where:	BarsBack	-	numerical	expression,	specifying	the	number	of	bars	back

Note

BarsBack	can't	be	a	negative	value.

Example

Set	a	value,	indicating	the	Maximum	Bars	Back	setting	for	the	study	to	50:

SetMaxBarsBack(50);

436

Abort

Generates	a	run-time	error	and	aborts	the	execution	of	the	study.

Usage

Abort

Example

Abort	the	studys	execution:

Abort;

437

CommandLine

Passes	a	string	expression	from	script	to	command	line.

Usage

CommandLine("Expression")

See	the	list	of	supported	expressions	for	the	command	line.

Examples

CommandLine(".rld");

Reloads	the	chart	where	the	script	is	applied	(reloads	all	chart	where	the	same
symbol	is	used).

CommandLine(".at_toggle");

Turns	on/off	auto	trading	on	the	chart	where	the	script	is	applied	(if	it	is	used	to
turn	auto	trading	on,	the	popped	up	confirmation	window	cannot	be	skipped	and	a
manual	click	on	"OK"	is	required).

CommandLine(".csy	dnum=1,	name=AUD/CHF,	df=LMAX");

Changes	the	symbol	plotted	as	data	series	1	to	AUD/CHF	and	the	data	source	to
LMAX	on	the	chart	where	the	script	is	applied.

CommandLine(".isy	name=@ES#,	df=IQFeed,	res=1	min,	desc=E-MINI	S&P;	500
MARCH	2013,	from=12/31/2012,	to=5/10/2013");

Inserts	1	minute	graph	of	S&P;	mini	500	from	IQFeed	starting	from	31th	of
December	2012	up	to	10th	of	May	2013	as	additional	data	series	to	the	chart	where
the	script	is	applied.

CommandLine(".iid	name=MACD,	base=1,	bref=100");

Applies	MACD	indicator	to	the	data	series	1	with	MaxBarsBack	parameter	=	100	to

438

http://www.multicharts.com/trading-software/index.php/MultiCharts_Work_Area#The_List_of_Supported_Commands

the	chart	where	the	script	is	applied.

CommandLine(".rld	int	2	weeks");

Reloads	2	weeks	of	data	on	the	chart	where	the	script	is	applied.

439

fpcExactAccuracy

Constant,	used	in	combination	with	SetFPCompareAccuracy	to	designate	the
floating	point	compare	tolerance	value	of	0.00;	can	be	substituted	by	a	numerical
value	of	5.

Usage

SetFPCompareAccuracy(fpcExactAccuracy)

or:

SetFPCompareAccuracy(5)

Example

Set	the	floating	point	compare	accuracy	to	Exact:

SetFPCompareAccuracy(fpcExactAccuracy);	

Set	the	floating	point	compare	accuracy	to	Exact:

SetFPCompareAccuracy(5);

440

fpcHighAccuracy

Constant,	used	in	combination	with	SetFPCompareAccuracy	to	designate	the
floating	point	compare	tolerance	value	of	2.2204460492503131e-14;	can	be
substituted	by	a	numerical	value	of	3.

Usage

SetFPCompareAccuracy(fpcHighAccuracy)

or:

SetFPCompareAccuracy(3)

Example

Set	the	floating	point	compare	accuracy	to	High:

SetFPCompareAccuracy(fpcHighAccuracy);	

Set	the	floating	point	compare	accuracy	to	High:

SetFPCompareAccuracy(3);

441

fpcLowAccuracy

Constant,	used	in	combination	with	SetFPCompareAccuracy	to	designate	the
floating	point	compare	tolerance	value	of	2.2204460492503131e-10;	can	be
substituted	by	a	numerical	value	of	1.

Usage

SetFPCompareAccuracy(fpcLowAccuracy)

or:

SetFPCompareAccuracy(1)

Example

Set	the	floating	point	compare	accuracy	to	Low:

SetFPCompareAccuracy(fpcLowAccuracy);

Set	the	floating	point	compare	accuracy	to	Low:

SetFPCompareAccuracy(1);

442

fpcMedAccuracy

Constant,	used	in	combination	with	SetFPCompareAccuracy	to	designate	the
floating	point	compare	tolerance	value	of	2.2204460492503131e-12;	can	be
substituted	by	a	numerical	value	of	2.

Usage

SetFPCompareAccuracy(fpcMedAccuracy)

or:

SetFPCompareAccuracy(2)

Example

Set	the	floating	point	compare	accuracy	to	Medium:

SetFPCompareAccuracy(fpcMedAccuracy);	

Set	the	floating	point	compare	accuracy	to	Medium:

SetFPCompareAccuracy(2);

443

fpcVeryHighAccuracy

Constant,	used	in	combination	with	SetFPCompareAccuracy	to	designate	the
floating	point	compare	tolerance	value	of	2.2204460492503131e-16;	can	be
substituted	by	a	numerical	value	of	4.

Usage

SetFPCompareAccuracy(fpcVeryHighAccuracy)

or:

SetFPCompareAccuracy(4)

Example

Set	the	floating	point	compare	accuracy	to	Very	High:

SetFPCompareAccuracy(fpcVeryHighAccuracy);	

Set	the	floating	point	compare	accuracy	to	Very	High:

SetFPCompareAccuracy(4);

444

fpcVeryLowAccuracy

Constant,	used	in	combination	with	SetFPCompareAccuracy	to	designate	the
floating	point	compare	tolerance	value	of	2.2204460492503131e-8;	can	be
substituted	by	a	numerical	value	of	0.

Usage

SetFPCompareAccuracy(fpcVeryLowAccuracy)

or:

SetFPCompareAccuracy(0)

Example

Set	the	floating	point	compare	accuracy	to	Very	Low:

SetFPCompareAccuracy(fpcVeryLowAccuracy);	

Set	the	floating	point	compare	accuracy	to	Very	Low:

SetFPCompareAccuracy(0);

445

RaiseRunTimeError

Generates	a	run-time	error	and	displays	the	specified	error	message.

A	run-time	error	will	cause	the	execution	of	the	study	to	be	aborted.

Usage

RaiseRunTimeError("Message")

Where:	Message	-	a	string	expression	specifying	the	error	message

Example

Generate	a	run-time	error	and	display	the	message	"Strategy	Stopped":

RaiseRunTimeError("Strategy	Stopped");

446

RecalcLastBarAfter

Initializes	the	calculation	after	expiration	of	the	timeout,	set	in	seconds.	Note:	The
maximum	recalculation	frequency	is	100	milliseconds	(0.1	sec).

RecalcLastBarAfter(Timeout)

	Where:	Timeout	-	the	number	of	seconds.

Example

RecalcLastBarAfter(60)	will	initiate	new	script	calculation	after	one	minute
timeout	since	the	last	calculation.

447

ReCalculate

Initializes	recalculation	of	the	study.	All	the	variables	will	be	re-initialized.

The	study	will	be	recalculated	from	the	first	bar	of	the	data	series.

Usage

ReCalculate

Note

To	avoid	infinite	looping	of	the	script,	use	global	variables	with	recalculation
conditions.

Example

Set	the	condition	for	recalculation:

Var:	ReCalcPersist	recalc_once(True),	vo10(0);	

If	LastBarOnChart	Then	Begin	
				Print	("Last	bar	volume	=	",	Volume);	

				If	recalc_once	Then	Begin	
								Print	("Recalculate	study!");	
								recalc_once	=	False	
								ReCalculate;	
				End;	

End;

448

SetFPCompareAccuracy

Sets	floating	point	compare	accuracy	by	specifying	the	tolerance	value	to	be	used
when	floating	point	values	are	compared.

Two	floating	point	values	will	be	considered	equal	if	"abs(Value1		Value2)	<=	ε",
where	ε	is	the	tolerance	value.

By	default,	the	tolerance	value	is	2.2204460492503131e-012.

Usage

SetFPCompareAccuracy(Accuracy)

Parameters

Accuracy	-	an	FPC	constant	or	a	numerical	expression	specifying	a	tolerance	value
as	follows:

	fpcVeryLowAccuracy 		0		 	02.2204460492503131e-8
	fpcLowAccuracy 		1 	12.2204460492503131e-10
	fpcMedAccuracy 		2 	22.2204460492503131e-12	(Default)	
	fpcHighAccuracy 		3 	32.2204460492503131e-14
	fpcVeryHighAccuracy	 		4 	42.2204460492503131e-16
	fpcExact 		5 	50.00

Example

Set	floating	point	compare	accuracy	to	High:

SetFPCompareAccuracy(3);	

Set	floating	point	compare	accuracy	to	High:

SetFPCompareAccuracy(fpcHighAccuracy);

449

#Return

Returns	the	control	from	the	study	script	by	analogy	with	the	corresponding	C++
statement.

Does	not	return	any	value.

Usage

#Return;

Notes

Can	be	used	in	all	types	of	studies.

450

AtCommentaryBar
This	reserved	word	returns	a	value	of	True	on	the	bar	clicked	by	the	user.

It	will	return	a	value	of	False	for	all	other	bars.

This	allows	you	to	optimize	your	trading	strategies,	analysis	techniques,	and
functions	for	speed,	as	it	will	allow	PowerLanguage	to	skip	all	commentary-related
calculations	for	all	bars	except	for	the	one	where	the	commentary	is	requested.

Usage

AtCommentaryBar

Notes

The	difference	between	AtCommentaryBar	and	CommentaryEnabled	is	that
CommentaryEnabled	returns	a	value	of	True	for	ALL	bars	when	the	Expert
Commentary	window	is	open,	while	the	AtCommentaryBar	returns	a	value	of	True
only	for	the	bar	clicked.

Example

The	following	statements	display	a	50-bar	average	of	the	volume	in	the	Expert
Commentary	window	but	avoid	calculating	this	50-bar	average	for	every	other	bar
of	the	chart:

If	AtCommentaryBar	Then

Commentary	("The	50-bar	vol	avg:	",	Average	(Volume,	50));

451

CheckCommentary
Returns	True	after	left	click	on	a	chart	with	the	Expert	Commentary	pointer	on	the
specified	bar.

Returns	False	if	the	pointer	has	not	been	inserted,	or	if	the	pointer	was	inserted	on
a	different	bar.

Usage

CheckCommentary

Example

If	you	only	wanted	code	to	be	evaluated	for	the	bar	where	the	user	had	inserted	the
Expert	Commentary	Tool,	you	could	use	the	following	syntax:

If	CheckCommentary	Then	Begin	{Your	Code	Here}	
End;

452

Commentary
This	reserved	word	sends	the	expression	(or	list	of	expressions)	to	the	Expert
Commentary	window	for	whatever	bar	is	selected	on	the	price	chart.

Usage

Commentary	("My	Expression");

Where	"My	Expression"	is	the	numerical,	text	string	or	true/false	expression	that
is	to	be	sent	to	the	Expert	Commentary	window.

You	can	send	multiple	expressions,	commas	must	separate	them.

Example

The	following	will	result	in	the	string	"This	is	one	line	of	commentary"	being	sent
to	the	commentary	window.

Any	additional	commentary	sent	will	be	placed	on	the	same	line.

Commentary	("This	is	one	line	of	commentary");

453

CommentaryCL
This	reserved	word	sends	the	expression	(or	list	of	expressions)	to	the	Expert
Commentary	window	for	whatever	bar	is	selected	by	the	Expert	Commentary
pointer.

Usage

CommentaryCL	("My	Expression");

Where	"My	Expression"	is	a	single	or	a	comma-separated	list	of	numeric,	text
string,	or	true/false	expressions	that	are	sent	to	the	Expert	Commentary	window.

Example

The	following	will	result	in	the	string	"This	is	one	line	of	commentary"	being	sent
to	the	commentary	window.

Any	additional	commentary	sent	will	be	placed	on	the	next	line.

CommentaryCL	("This	is	one	line	of	commentary");

454

CommentaryEnabled
This	reserved	word	returns	a	value	of	True	only	when	the	Expert	Commentary
window	is	open	and	Commentary	has	been	requested.

This	allows	you	to	optimize	your	trading	strategies,	analysis	techniques,	and
functions	for	speed,	as	it	allows	PowerLanguage	to	perform	commentary-related
calculations	only	when	the	Expert	Commentary	window	is	open.

Usage

CommentaryEnabled

Notes

The	difference	between	CommentaryEnabled	and	AtCommentaryBar	is	that
CommentaryEnabled	returns	a	value	of	True	for	ALL	bars	when	the	Expert
Commentary	window	is	open,	while	the	AtCommentaryBar	returns	a	value	of	True
only	for	the	bar	clicked	with	the	Expert	Commentary	pointer.

Example

CommentaryEnabled	will	return	True	if	the	Analysis	Commentary	Tool	has	been
applied	to	the	chart.

455

#BeginCmtry
The	statements	between	this	compiler	directive	and	the	reserved	word	#End	are
evaluated	only	when	the	Expert	Commentary	tool	is	used	to	select	a	bar	on	a	chart
or	a	cell	in	a	grid.

The	reserved	word	#End	must	be	used	with	this	reserved	word.

Usage

#BeginCmtry

Commentary("The	indicator	value	here	is	"	+	NumtoStr	(Plot1,	2));

#End;

Notes

All	statements	between	the	#BeginCmtry	and	#End	are	ignored,	including
calculation	of	MaxBarsBack,	unless	commentary	is	generated.

Example

An	indicator	that	calculates	the	10-bar	momentum	of	the	closing	price	needs	ten
bars	in	order	to	start	plotting	results.

If	commentary	is	added	to	this	indicator	and	the	commentary	uses	a	50-bar	average
of	the	volume,	then	the	MaxBarsBack	setting	is	increased	to	fifty.

However,	the	50-bar	average	is	only	used	for	the	commentary,	so	there	is	no	need
to	have	the	indicator	wait	fifty	bars	before	giving	results	unless	Commentary	is
requested.

To	have	the	indicator	plot	after	10	bars	and	ignore	the	50-bar	requirement,	the
indicator	can	be	written	as	follows:

Plot1	(Close	-	Close	[10],	"Momentum");	

456

#BeginCmtry;	
If	Close	-	Close	[10]	>	0	Then	
Commentary	("Momentum	is	positive,	")	
Else	
Commentary	("Momentum	is	negative,	");	
If	Volume	>	Average	(Volume,	50)	Then	
Commentary	("	and	volume	is	greater	than	average.")	
Else	
Commentary	("	and	volume	is	lower	than	average.");	
#End;

This	indicator	plots	the	momentum	and	the	commentary	states	whether	the
momentum	is	positive	or	negative,	and	if	the	volume	is	over	or	under	the	50-bar
average	of	the	volume.

When	the	indicator	is	applied	without	using	commentary,	it	will	require	only	10
bars	to	start	calculating.

When	commentary	is	requested,	the	indicator	is	recalculated,	the	statements	within
the	compiler	directives	are	evaluated,	and	the	new	minimum	number	of	bars
required	is	50.

Any	series	functions	within	these	reserved	words	are	also	ignored.

457

AbsValue
Returns	the	absolute	value	of	the	specified	numerical	expression.

Usage

AbsValue(Value)

Where:	Value	-	a	numerical	expression

Example

AbsValue(45.275)	will	return	a	value	of	45.275

AbsValue(-1385)	will	return	a	value	of	1385

458

ArcTangent
Returns	the	arctangent	value,	in	degrees,	of	the	specified	numerical	expression.

Usage

ArcTangent(Value)

Where:	Value	-	a	numerical	expression

Example

ArcTangent(2.318)	will	return	a	value	of	66.66

459

AvgList
Returns	the	average	value	of	the	specified	numerical	expressions.

Usage

AvgList(Value1,Value2,Value3,	etc.)

Where:	Value1,	Value2,	Value3,	etc.	-	numerical	expressions

Example

AvgList(45,40,0,35)	will	return	a	value	of	30

AvgList(-40,20)	will	return	a	value	of	-10

460

Ceiling
Returns	the	smallest	integer	greater	than	or	equal	to	the	specified	numerical
expression.

Usage

Ceiling(Value)

Where:	Value	-	a	numerical	expression

Example

Ceiling(9.1)	will	return	a	value	of	10

Ceiling(-2.85)	will	return	a	value	of	-2

461

Cosine
Returns	the	cosine	value	for	an	angle	of	the	specified	number	of	degrees.

Usage

Cosine(Value)

Where:	Value	-	a	numerical	expression,	specifying	the	number	of	degrees	in	the
angle

Example

Cosine(60)	will	return	a	value	of	0.5

462

Cotangent
Returns	the	cotangent	value	for	an	angle	of	the	specified	number	of	degrees.

Usage

Cotangent(Value)

Where:	Value	-	a	numerical	expression,	specifying	the	number	of	degrees	in	the
angle

Example

Cotangent(30)	will	return	a	value	of	1.732

463

ExpValue
Returns	the	exponential	value	of	the	specified	numerical	expression.

Usage

ExpValue(Value)

Where:	Value	-	a	numerical	expression

Example

ExpValue(2.3)	will	return	a	value	of	9.0250

464

Floor
Returns	the	greatest	integer	less	than	or	equal	to	the	specified	numerical
expression.

Usage

Floor(Value)

Where:	Value	-	a	numerical	expression

Example

Floor(9.1)	will	return	a	value	of	9

Floor(-2.85)	will	return	a	value	of	-3

465

FracPortion
Returns	the	fractional	portion	of	the	specified	numerical	expression	while	retaing
the	sign.

Usage

FracPortion(Value)

Where:	Value	-	a	numerical	expression

Example

FracPortion(-45.275)	will	return	a	value	of	-0.275

FracPortion(1385)	will	return	a	value	of	0

466

IntPortion
Returns	the	integer	portion	of	the	specified	numerical	expression	while	retaing	the
sign.

Usage

IntPortion(Value)

Where:	Value	-	a	numerical	expression

Example

IntPortion(-45.75)	will	return	a	value	of	-45

IntPortion(1385)	will	return	a	value	of	1385

467

Log
Returns	the	natural	logarithm	of	the	specified	numerical	expression.

Usage

Log(Value)

Where:	Value	-	a	numerical	expression

Example

Log(25)	will	return	a	value	of	3.2189

468

MaxList
Returns	the	value	of	the	greatest	of	the	specified	numerical	expressions.

Usage

MaxList(Value1,Value2,Value3,	etc.)

Where:	Value1,	Value2,	Value3,	etc.	-	numerical	expressions

Example

MaxList(-5,0,12,7)	will	return	a	value	of	12

469

MaxList2
Returns	the	second	highest	value	of	the	specified	numerical	expressions.

Usage

MaxList2(Value1,Value2,Value3,	etc.)

Where:	Value1,	Value2,	Value3,	etc.	-	numerical	expressions

Example

MaxList2(-5,0,12,7)	will	return	a	value	of	7

470

MinList
Returns	the	lowest	value	of	the	specified	numerical	expressions.

Usage

MinList(Value1,Value2,Value3,	etc.)

Where:	Value1,Value2,Value3,	etc.	-	numerical	expressions

Example

MinList(-5,0,12,7)	will	return	a	value	of	-5

471

MinList2
Returns	the	second	lowest	value	of	the	specified	numerical	expressions.

Usage

MinList2(Value1,Value2,Value3,	etc.)

Where:	Value1,Value2,Value3,	etc.	-	numerical	expressions

Example

MinList(-5,0,12,7)	will	return	a	value	of	0

472

Mod
Returns	the	remainder	from	dividing	one	specified	numerical	expression	by
another.

Usage

Mod(Dividend,Divisor)

Where:	Dividend	-	a	numerical	expression
													Divisor	-	a	numerical	expression

Example

Mod(25,7)	will	return	a	value	of	4

473

Neg
Returns	the	negative	absolute	value	of	the	specified	numerical	expression.

Usage

Neg(Value)

Where:	Value	-	a	numerical	expression

Example

Neg(12)	will	return	a	value	of	-12

Neg(-7)	will	return	a	value	of	-7

474

NthMaxList
Returns	the	Nth	highest	value	of	the	specified	numerical	expressions.

Usage

NthMaxList(N,Value1,Value2,Value3,	etc.)

Where:	N	-	a	numerical	expression,	indicating	the	rank	of	the	value	to	be	returned	
													Value1,Value2,Value3,	etc.	-	numerical	expressions

Example

NthMaxList(4,-15,-5,0,6,12)	will	return	a	value	of	-5

475

NthMinList
Returns	the	Nth	lowest	value	of	the	specified	numerical	expressions.

Usage

NthMinList(N,Value1,Value2,Value3,	etc.)

Where:	N	-	a	numerical	expression,	indicating	the	rank	of	the	value	to	be	returned	
													Value1,	Value2,	Value3,	etc.	-	numerical	expressions

Example

NthMinList(4,-15,-5,0,6,12)	will	return	a	value	of	6

476

Pos
Same	as	AbsValue

477

Power
Returns	the	value	of	one	specified	numerical	expression	to	the	power	of	another.

Usage

Power(Base,Exponent)

Where:	Base	-	a	numerical	expression
													Exponent	-	a	numerical	expression

Example

Power(5,3)	will	return	a	value	of	125

478

Random
Returns	a	pseudo-random	number	between	0	and	the	value	of	the	specified
numerical	expression.

Usage

Random(Value)

Where:	Value	-	a	numerical	expression

Example

Random(1.25)	will	return	a	random	value	anywhere	between	0	and	1.25

Random(-10)	will	return	a	random	value	anywhere	between	-10	and	0

479

Round
Returns	the	value	of	one	specified	numerical	expression	rounded	to	the	number	of
decimal	places	specified	by	another.

Usage

Round(Value,Precision)

Where:	Value	-	a	numerical	expression
													Precision	-	a	numerical	expression

Example

Round(1.237,2)	will	return	a	value	of	1.24

Round(-5.7744,3)	will	return	a	value	of	5.774

480

Sign
Returns	a	numerical	value,	indicating	the	sign	of	the	value	of	the	specified
numerical	expression.

A	value	of	1	is	returned	for	a	positive	value,	-1	is	returned	for	a	negative	value,	and
0	is	returned	for	the	value	of	0.

Usage

Sign(Value)

Where:	Value	-	a	numerical	expression

Example

Sign(5)	will	return	a	value	of	1

Sign(-2.85)	will	return	a	value	of	-1

Sign(0)	will	return	a	value	of	0

481

Sine
Returns	the	sine	value	for	an	angle	of	the	specified	number	of	degrees.

Usage

Sine(Value)

Where:	Value	-	a	numerical	expression,	specifying	the	number	of	degrees	in	the
angle

Example

Sine(30)	will	return	a	value	of	0.5

482

Square
Returns	the	square	of	the	value	of	the	specified	numerical	expression.

Usage

Square(Value)

Where:	Value	-	a	numerical	expression

Example

Square(2.5)	will	return	a	value	of	6.25

483

SquareRoot
Returns	the	square	root	of	the	value	of	the	specified	numerical	expression.

Usage

SquareRoot(Value)

Where:	Value	-	a	numerical	expression

Example

SquareRoot(57.73)	will	return	a	value	of	7.598

484

SumList
Returns	a	sum	of	the	values	of	the	specified	numerical	expressions.

Usage

SumList(Value1,Value2,Value3,	etc.)

Where:	Value1,	Value2,	Value3,	etc.	-	numerical	expressions

Example

SumList(45,-20,0,35)	will	return	a	value	of	60

485

Tangent
Returns	the	tangent	value	for	an	angle	of	the	specified	number	of	degrees.

Usage

Tangent(Value)

Where:	Value	-	a	numerical	expression,	specifying	the	number	of	degrees	in	the
angle

Example

Tangent(40)	will	return	a	value	of	0.839

486

Ago
Used	in	combination	with	Bar	or	Bars	and	a	numerical	expression	to	reference	the
bar	a	specified	number	of	bars	back	from	the	current	bar.

Bars	Ago	can	also	be	specified	by	using	the	bar	offset	notation	that	consists	of	a
numerical	expression	enclosed	in	square	brackets.

Usage

N	Bars	Ago

or:

[N]	

Where:	N	-	a	numerical	expression	specifying	the	number	of	bars	back	to	reference

Example

Plot	the	closing	price	of	the	previous	bar:

Plot1(Close	Of	1	Bar	Ago,	"Previous	bar's	close");	

Plot	the	closing	price	of	two	bars	ago:

Plot1(Close[2],	"Close	2	bars	ago");

487

Bar
Used	in	combination	with	This,	Next,	or	Ago	to	reference	a	specific	bar.

Usage

Bar

Example

Close	Of	1	Bar	Ago		will	return	the	closing	price	of	the	previous	bar	

Buy	a	user-set	number	of	shares	on	close	of	this	bar:

Buy	This	Bar	On	Close;	

Buy	a	user-set	number	of	shares	on	open	of	next	bar:

Buy	Next	Bar	On	Open;

488

Bars
Same	as	Bar

489

Contract
Same	as	Contracts

490

Contracts
Used	in	strategy	entry	or	exit	statements	in	combination	with	a	numerical
expression	to	specify	the	number	of	contracts	or	shares	to	trade.

Usage

TradeSize	Contracts

Where:	TradeSize	-	a	numerical	expression,	specifying	the	number	of	contracts	or
shares

Example

Buy	2	contracts	at	Market	price	on	open	of	next	bar:

Buy	2	Contracts	Next	Bar	At	Market;

491

Market
Used	in	strategy	entry	or	exit	statements	to	specify	a	Market	price	for	an	entry	or	an
exit.

A	Market	Buy	order	will	execute	at	the	current	ask	price	and	a	Maret	Sell	order	will
execute	at	the	current	bid	price.

Usage

At	Market

Where:		At		is	a	skip	word	and	can	be	omitted

Example

Buy	a	user-set	number	of	shares	at	Market	price	on	open	of	next	bar:

Buy	Next	Bar	At	Market;

492

Next
Used	in	combination	with	Bar	to	reference	the	next	bar.

Usage

Next	Bar

Example

Buy	a	user-set	number	of	shares	at	Market	price	on	open	of	next	bar:

Buy	Next	Bar	At	Market;

493

This
Used	in	combination	with	Bar	to	reference	the	current	bar.

Usage

This	Bar

Example

Buy	a	user-set	number	of	shares	on	close	of	this	bar:

Buy	This	Bar	On	Close;

494

Today
Retained	for	backward	compatibility;	replaced	with	This	Bar

495

Yesterday
Retained	for	backward	compatibility.

496

MouseClickBarNumber

After	a	mouse	click	on	the	bar,	returns	the	numerical	value	indicating	the	bar
number	from	the	beginning	of	the	data	series.

Usage

MouseClickBarNumber

Example

MouseClickBarNumber	-	will	return	250	after	a	mouse	click	on	the	250th	bar	on	the
chart	from	the	beginning	of	the	data	series.

497

MouseClickCtrlPressed

Returns	True	if	the	Ctrl	button	is	pressed	on	the	keyboard	simultaneously	with	a
mouse	click.

Usage

MouseClickCtrlPressed

498

MouseClickDataNumber

Returns	the	numerical	value	indicating	the	data	series	number	after	a	mouse	click
on	the	data	series.

Usage

MouseClickDataNumber

Example

MouseClickDataNumber	-	will	return	1	after	left-click	on	the	main	chart	with	the
main	data	series.

MouseClickDataNumber	-	will	return	2	after	left-click	on	the	sub-chart	with	the
second	data	series.

499

MouseClickDateTime

Returns	a	double-precision	decimal	value	in	Julian	(OLE)	date-time	format
indicating	the	closing	date	of	the	bar	after	a	click	on	the	bar.

Usage

MouseClickDateTime

Example

MouseClickDateTime	-	will	return	a	value	of	39449.65625000	for	3:45	PM.

500

MouseClickPrice

Returns	a	numerical	value	indicating	price	level	of	the	mouse	pointer	position	after
a	click	on	the	chart.

Usage

MouseClickPrice

Example

MouseClickPrice	-	will	return	139.60	after	a	click	on	the	chart	on	the	139.60	price
level.

501

MouseClickShiftPressed

Returns	True	if	the	Shift	button	is	pressed	on	the	keyboard	simultaneously	with	a
mouse	click.

Usage

MouseClickShiftPressed

502

PlaySound
Plays	the	specified	wave	(.wav)	sound	file.	

Usage	

PlaySound("PathFilename")

Where:	PathFilename		-	a	string	expression	specifying	the	path	and	filename	of	the
wave	file	to	be	played	

Example	

Play	ding.wav	sound	file	located	in	the	root	directory	of	the	C:	hard	drive:

PlaySound("C:\ding.wav");	

503

ClearDebug
Clears	the	PowerLanguage	Editor	Output	Log.

Usage

ClearDebug

Example

ClearDebug;		will	clear	the	PowerLanguage	Editor	Output	Log

504

ClearPrintLog
Same	as	ClearDebug

505

File
Used	in	Print	statements	to	specify	an	ASCII	file	as	the	output	location;	must
precede	the	expressions	to	be	printed	and	be	followed	by	a	comma.	If	the	specified
file	does	not	exist,	the	file	will	be	created.

Usage

File("PathFilename")

Where:	PathFilename		-	a	string	expression	specifying	the	path	and	filename

Example

Print(File("C:\test.txt"),CurrentDate,CurrentTime);		will	save	the	output	of
CurrentDate	and	CurrentTime	to	the	test.txt	file	in	the	root	directory	of	the	C:	hard
drive

506

FileAppend
Appends	the	specified	string	expression	to	the	end	of	the	specified	ASCII	file;	if	the
specified	file	does	not	exist,	the	file	will	be	created.

Usage

FileAppend("PathFilename","StringExpression")

Where:	PathFilename		-	a	string	expression	specifying	the	path	and	filename
													StringExpression		-	the	string	expression	to	be	appended	to	a	file

Example

FileAppend("C:\test.txt","Appended	Text");		will	append	the	string	expression
"Appended	Text"	to	the	end	of	the	test.txt	file	in	the	root	directory	of	the	C:	hard
drive

507

FileDelete
Deletes	the	specified	file.

Usage

FileDelete("PathFilename")

Where:	PathFilename		-	a	string	expression	specifying	the	path	and	filename	of	the
file	to	be	deleted

Example

FileDelete("C:\test.txt");		will	delete	the	file	test.txt	in	the	root	directory	of	the
C:	hard	drive

508

MessageLog
Displays	one	or	more	specified	expressions	in	the	PowerLanguage	Editor	Output
Log.	Any	combination	of	string,	true/false,	numerical	series,	or	numerical
expressions	can	be	specified.

Usage

MessageLog(Expression1,Expression2,etc.)

Parameters

Expression	-	a	string,	true/false,	numerical	series,	or	numerical	expression;	any
number	of	valid	expressions,	separated	by	commas,	can	be	used

A	string	expression		must	be	enclosed	in	quotation	marks:

"String	Expression"

A	numerical	expression		can	be	formatted	to	specify	the	minimum	number	of
characters,	including	the	decimal	point,	and	the	number	of	decimal	places,	to	be
used	for	the	output:

Expression:C:D

Where:	C	-	minimum	number	of	characters	
													D	-	number	of	decimal	places

The	default	output	format	for	a	numerical	expression	is	two	decimal	places	and	a
minimum	of	seven	characters.

If	the	number	of	decimal	places	in	the	numerical	expression	is	more	than	the
specified	number,	the	value	will	be	will	be	rounded	off	to	the	specified	number	of
decimal	places.

If	the	number	of	characters	in	the	output	is	less	than	the	specified	minimum,	leading
spaces	will	be	added	to	bring	the	output	to	the	specified	minimum	value.

509

Example

MessageLog(.1);		will	display			0.10	in	the	PowerLanguage	Editor	Output	Log,	with
three	leading	spaces	inserted

MessageLog(1.555555:6:3);		will	display	1.556	in	the	PowerLanguage	Editor
Output	Log,	with	one	leading	space	inserted

MessageLog("Current	Time	is:",CurrentTime:5:0);		will	display	the	string
expression	"Current	Time	is:",	followed	by	the	output	of	the	CurrentTime,	with	one
leading	space	inserted,	in	the	PowerLanguage	Editor	Output	Log

510

Print
Sends	one	or	more	specified	expressions	to	the	PowerLanguage	Editor	Output	Log
or	another	output	target,	if	specified.	Any	combination	of	string,	true/false,
numerical	series,	or	numerical	expressions	can	be	specified.

Usage

Print([OutputTarget],Expression1,Expression2,etc.)

Parameter	inside	the	square	brackets	is	optional
Parameters

OutputTarget		-	an	optional	parameter;	specifies	an	output	target	other	then	the
PowerLanguage	Editor	Output	Log;	the	parameter	must	be	followed	by	a	comma.	

There	are	two	optional	output	targets:

Printer

Specifies	the	default	printer	as	the	output	target.	

File("PathFilename")

Where:	PathFilename	-	a	string	expression	specifying	the	path	and	filename

Specifies	an	ASCII	file	as	the	output	target;	if	the	specified	file	does	not	exist,	the
file	will	be	created.

If	OutputTarget		is	not	specified,	the	output	will	be	sent	to	the	PowerLanguage
Editor	Output	Log.

Expression	-	a	string,	true/false,	numerical	series,	or	numerical	expression;	any
number	of	valid	expressions,	separated	by	commas,	can	be	used

A	string	expression		must	be	enclosed	in	quotation	marks:

"String	Expression"

511

A	numerical	expression		can	be	formatted	to	specify	the	minimum	number	of
characters,	including	the	decimal	point,	and	the	number	of	decimal	places,	to	be
used	for	the	output:

Expression:C:D

Where:	C	-	minimum	number	of	characters	
													D	-	number	of	decimal	places

The	default	output	format	for	a	numerical	expression	is	two	decimal	places	and	a
minimum	of	seven	characters.

If	the	number	of	decimal	places	in	the	numerical	expression	is	more	than	the
specified	number,	the	value	will	be	will	be	rounded	off	to	the	specified	number	of
decimal	places.

If	the	number	of	characters	in	the	output	is	less	than	the	specified	minimum,	leading
spaces	will	be	added	to	bring	the	output	to	the	specified	minimum	value.

Example

Print(.1);		will	print		0.10	in	the	PowerLanguage	Editor	Output	Log,	with	three
leading	spaces	inserted

Print(1.555555:6:3);		will	print	1.556	in	the	PowerLanguage	Editor	Output	Log,
with	one	leading	space	inserted

Print(Printer,"Print	Test");		will	send	the	string	expression	"Print	Test"	to	the
default	printer

Print(File("C:\test.txt"),CurrentDate,CurrentTime);		will	save	the	output	of
CurrentDate	and	CurrentTime	to	the	test.txt	file	in	the	root	directory	of	the	C:	hard
drive

512

Default
Used	in	plot	statements	to	specify	a	default	style.	Default	styles	are	set	by	the	user.

For	more	information	see	Plot

Usage

Default

Example

Plot	the	closing	price	using	the	default	styles	(color	and	width):

Plot1(Close,"Close",Default,Default,Default);

513

GetBackgroundColor

Returns	an	RGB	color	number	or	a	legacy	color	value	that	correspond	to	the
background	color	of	the	chart.

Usage

GetBackgroundColor

Example

Assign	an	RGB	color	number,	corresponding	to	the	background	color	of	the	chart,
to	Value1	variable:

Value1=GetBackgroundColor;	

Assign	a	legacy	color	value,	corresponding	to	the	background	color	of	the	chart,
to	Value1	variable:

[LegacyColorValue=True];

Value1=GetBackgroundColor;

514

GetPlotBGColor

Returns	the	numeric	color	value	of	the	plot	(cell)	background	in	a	grid.

Usage

GetPlotBGColor(PlotNum)

Where:	PlotNum	-	numerical	expression	representing	plot	number

Example

Set	a	variable,	Value1,	to	the	cell	color	of	the	Plot1	background:

Value1	=	GetPlotBGColor(1);

515

GetPlotColor

Returns	an	RGB	color	number	or	a	legacy	color	value	that	correspond	to	the	color
of	the	specified	plot.

Usage

GetPlotColor(PlotNumber)

Where:	PlotNumber	-	a	numerical	expression	specifying	the	plot	number;	plot
numbers	range	from	1	to	999

Example

Assign	an	RGB	color	number,	corresponding	to	the	color	of	Plot1,	to	Value1
variable:

Value1=GetPlotColor(1);

Assign	a	legacy	color	value,	corresponding	to	the	color	of	Plot1,	to	Value1
variable:

[LegacyColorValue=True];

Value1=GetPlotColor(1);

516

GetPlotWidth

Returns	the	plot	line	width	value	of	the	specified	plot.	Plot	line	width	values	range
from	0	to	14.

Usage

GetPlotWidth(PlotNumber)

Where:	PlotNumber	-	a	numerical	expression	specifying	the	plot	number;	plot
numbers	range	from	1	to	999

Example

Assign	the	plot	line	width	value	of	Plot1	to	Value1	variable:

Value1=GetPlotWidth(1);

517

I_getplotvalue

Gets	the	value	calculated	by	a	signal	that	is	to	be	used	for	plotting	from	an
indicator.	It	can	be	considered	as	a	bridge	between	a	signal	and	an	indicator.	Using
i_setplotvalue	and	i_getplotvalue	keywords	makes	it	possible	to	avoid	copying	the
same	script	for	calculation	the	same	value	in	both	indicator	and	signal.

Usage

i_getplotvalue(index)

Parameters

index	-	is	the	reference	number

Notes

1.	 i_getplotvalue	can	be	used	in	functions	and	indicators	if	any	signal	is	applied
to	the	main	chart.

2.	 Values	will	be	transferred	between	i_setplotvalue	and	i_getplotvalue	ONLY
within	1	chart	window,

3.	 i_setplotvalue	and	i_getplotvalue	will	return	0	if	applied	to	the	Market
Scanner	Window,

4.	 i_setplotvalue	and	i_getplotvalue	cannot	be	used	while	backtesting	a
portfolio,

5.	 i_setplotvalue	and	i_getplotvalue	cannot	be	referred	historically,

6.	 it	is	possible	to	use	unlimited	indexes	for	data	transfer.

Usage

Plot	in	the	indicator	the	max	drawdown	and	open	equity	values	calculated	by	the
signal	with	indexes	111	and	112

518

plot1(i_getplotvalue(111),	"MaxIDDrawdown");

plot2(i_getplotvalue(112),	"OpenEquity");

519

I_setplotvalue

Sets	the	value	calculated	by	a	signal	that	is	to	be	used	for	plotting	from	an	indicator.
It	can	be	considered	as	a	bridge	between	a	signal	and	an	indicator.	Using
i_setplotvalue	and	i_getplotvalue	keywords	makes	it	possible	to	avoid	copying	the
same	script	for	calculation	the	same	value	in	both	indicator	and	signal.

Usage

i_setplotvalue(index,value)

Parameters

index	-	is	the	reference	number

value	-	is	the	value	that	is	to	be	transferred.

Notes

1.	 i_setplotvalue	can	be	used	in	signals,	functions	and

indicators	if	any	signal	is	applied	to	the	main	chart.

2.	 Values	will	be	transferred	between	i_setplotvalue	and	i_getplotvalue	ONLY
within	1	chart	window,

3.	 i_setplotvalue	and	i_getplotvalue	will	return	0	if	applied	to	the	Market
Scanner	Window,

4.	 i_setplotvalue	and	i_getplotvalue	cannot	be	used	while	backtesting	a
portfolio,

5.	 i_setplotvalue	and	i_getplotvalue	cannot	be	referred	historically,

6.	 it	is	possible	to	use	unlimited	indexes	for	data	transfer.

Usage

520

Set	the	max	drawdown	and	open	equity	values	calculated	by	the	signal	to	be
transferred	into	the	indicator	with	indexes	111	and	112

i_setplotvalue(111,	maxiddrawdown)

i_setplotvalue(112,	netprofit	+	openpositionprofit)

521

NoPlot
Removes	a	specified	plot	from	the	current	bar.

A	conditional	plot	that	is	already	drawn	will	remain	even	if	the	conditions	become
no	longer	true	before	the	bar	is	closed.	NoPlot	can	be	used	to	remove	the
conditional	plot	from	the	current	bar	if	the	conditions	are	no	longer	true.

Usage

NoPlot(PlotNumber)

Where:	PlotNumber	-	a	numerical	expression	specifying	the	plot	number;	plot
numbers	range	from	1	to	999

Example

The	example	below	uses	NoPlot	remove	the	PlotPaintBar	plot	"painted"	over	the
charts	bars	for	which	the	High	price	is	no	longer	less	then	the	High	price	of	the
previous	bar:

If	High<High[1]	Then	Begin
PlotPaintBar(High,Low,"",Red);
End

Else	Begin
NoPlot(1);
NoPlot(2);
End;

Without	NoPlot,	charts	bars	for	which	a	High	price	was	initially	less	then	the	High
price	of	the	previous	bar	would	remain	partially	painted	even	if	a	High	price	equal
to	or	greater	then	the	High	price	of	the	previous	bar	was	reached	before	the	bar
was	closed.

522

Plot
Plots	the	specified	numerical	or	string	expression	on	a	chart,	up	to	999	different
plots	can	be	used	simultaneously.

Numerical:	Plot	offset,	name,	color,	and	plot	line	width	can	be	specified	by	using
the	optional	parameters.

String:	Ability	to	show	a	user-defined	text	message	on	the	status	line	of	the	chart	or
in	the	scanner.

Usage

Numerical:	PlotN<[Offset]>(Expression	<,"PlotName"<,PlotColor
<,Scanner	Cell	Background	Color	<,LineWidth	>>>>)

Text:	PlotN("String")

Parameters	inside	the	angled	brackets	are	optional

Parameters

N	-	a	number	used	to	identify	the	plot;	plot	numbers	can	range	from	1	to	999

Offset	-	an	optional	parameter;	a	numerical	expression	specifying	the	plot	offset,
in	bars;	a	positive	value	will	displace	the	plot	to	the	left	along	the	time	axis,	and	a
negative	value	will	displace	the	plot	to	the	right	along	the	time	axis

Expression	-	the	numerical	expression	to	be	plotted

PlotName	-	an	optional	parameter;	assigns	a	name	to	the	plot

PlotColor	-	an	optional	parameter;	specifies	the	plot	color	
Plot	color	can	be	specified	by	a	numerical	expression	representing	an	RGB	color
number	or	a	legacy	color	value,	by	one	of	17	base	color	words,	or	by	the	word
Default	to	specify	the	color	chosen	by	the	user.	In	order	for	PlotColor	to	be	used,
PlotName	parameter	must	also	be	used.

Scanner	Cell	Background	Color	-	an	optional	parameter;	sets	the	background
color	of	the	scanner	cell	if	this	plot	is	applied	to	a	scanner;	use	the	word	Default

523

to	specify	the	color	chosen	by	the	user.	In	order	for	Scanner	Cell	Background
Color	to	be	used,	PlotName	and	PlotColor	parameters	must	also	be	used.

LineWidth	-	an	optional	parameter;	specifies	the	plot	line	width,	ranging	from	1	to
14
Plot	line	width	can	be	specified	as	a	numerical	expression	or	by	the	word	Default
to	specify	the	line	width	chosen	by	the	user.	In	order	for	LineWidth	to	be	used,
PlotName,	PlotColor,	and	Scanner	Cell	Background	Color	parameters	must
also	be	used.

String	-	text	to	be	displayed

Example

Plot	the	closing	price	using	the	default	plot	color	and	line	width:

Plot1(Close);

Plot	the	closing	price	using	the	default	plot	color	and	line	width,	and	name	the	plot
"Close":

Plot1(Close,"Close",Default,Default,Default);

Plot	the	closing	price,	offset	back	by	3	bars,	using	the	plot	color	of	blue,	using	cell
background	color	of	green	if	this	plot	is	applied	to	a	scanner,	line	width	of	3,	and
name	the	plot	"Close	3	bars	later":

Plot1[3](Close,"Close	3	bars	later",Blue,Green,3);

Plot	the	closing	price,	offset	forward	by	3	bars,	using	the	RGB	color	2138336
(Orange),	and	name	the	plot	"Close	3	bars	ago":

Plot1[-3](Close,"Close	3	bars	ago",2138336);

Plot	the	closing	price	using	the	legacy	color	value	of	4	(Green)	and	name	the	plot
"Close":

[LegacyColorValue=True];
Plot1(Close,"Close",4);

Show	the	text	"Attention!"	on	the	status	bar	of	the	chart	or	in	the	scanner.	

524

Plot1("Attention!");

Show	the	text	"Attention!"	on	the	status	bar	of	the	chart	or	in	the	scanner	if	the	close
price	is	greater	than	100.	
If	close	>	100	then	Plot1("Attention!");

525

PlotPaintBar
Plots	the	specified	numerical	expressions	in	the	form	of	a	bar	chart.

Plot	name,	color,	and	plot	line	width	can	be	specified	by	using	the	optional
parameters.

PlotPaintBar	plot	can	be	superimposed	on	top	of	one	or	more	bars	of	a	bar	chart,
effectively	"painting"	the	bars.

Usage

PlotPaintBar	(BarHigh,	BarLow,	BarOpen,	BarClose	<,"PlotName"<,PlotColor
<,Default	<,LineWidth	>>>>)

Parameters	inside	the	angled	brackets	are	optional

Parameters

BarHigh,	BarLow,	BarOpen,	BarClose	-	numerical	expressions	specifying	the
High,	Low,	Open,	&	Close	prices	for	the	bars	to	be	plotted;	at	least	two	of	these
parameters	are	required

PlotName	-	an	optional	parameter;	assigns	a	name	to	the	plot

PlotColor	-	an	optional	parameter;	specifies	the	plot	color	
Plot	color	can	be	specified	by	a	numerical	expression	representing	an	RGB	color
number	or	a	legacy	color	value,	by	one	of	17	base	color	words,	or	by	the	word
Default	to	specify	the	color	chosen	by	the	user.	In	order	for	PlotColor	to	be	used,
PlotName	parameter	must	also	be	used.

Default	-	an	optional	parameter	reserved	for	future	use;	should	be	specified	as
Default;	use	of	this	parameter	is	required	in	order	for	LineWidth	to	be	used

LineWidth	-	an	optional	parameter;	specifies	the	plot	line	width,	ranging	from	1	to
14
Plot	line	width	can	be	specified	as	a	numerical	expression	or	by	the	word	Default
to	specify	the	line	width	chosen	by	the	user.	In	order	for	LineWidth	to	be	used,
PlotName,	PlotColor,	and	Default	parameters	must	also	be	used.

526

Notes

PlotPaintBar(BarHigh,BarLow,BarOpen,BarClose);

is	the	equivalent	of:

Plot1(BarHigh);
Plot2(BarLow);
Plot3(BarOpen);
Plot4(BarClose);

In	order	for	the	PlotPaintBar	plot	to	be	displayed	in	the	form	of	a	bar	chart,	the	plot
type	for	each	Plot	must	be	set,	in	the	Style	section	of	the	General	tab	of	the	Format
Indicator	window,	to	Bar	High,	Bar	Low,	Left	Tick,	and	Right	Tick,	respectively.

Example

Paint	red	these	bars	of	an	OHLC	chart	for	which	the	Open	price	is	less	then	the
Open	price	of	the	previous	bar:

If	Open<Open[1]	Then
PlotPaintBar(High,Low,Open,Close,"",Red);

527

PlotPB
Same	as	the	PlotPaintBar

528

SetPlotBGColor
Assigns	a	specified	color	to	the	cell	background	for	the	indicated	study	plot	for	the
duration	of	the	current	bar.

Use	of	SetBGPlotColor	is	effective	only	for	the	Scanner.

Usage

SetPlotBGColor(PlotNumber,PlotColor)

Parameters

PlotNumber	-	a	numerical	expression	specifying	the	plot	number;	plot	numbers
range	from	1	to	999

PlotColor	-	an	expression	specifying	the	cell	background	color	for	the	indicated
plot.	Cell	background	color	for	the	indicated	plot	can	be	specified	by	a	numerical
expression	representing	an	RGB	color	number,	a	legacy	color	value,	or	by	one	of
17	base	color	words.

Example

Assign	the	color	of	blue	to	the	indicated	cell	of	the	plot1	for	the	duration	of	the
current	bar:

SetPlotBGColor(1,Blue);

Assign	RGB	color	2138336	(Orange)	to	the	indicated	cell	of	the	plot1	for	the
duration	of	the	current	bar:

SetPlotColor(1,2138336);

Assign	legacy	color	4	(Green)	to	the	indicated	cell	of	the	plot1	for	the	duration	of
the	current	bar:

[LegacyColorValue=True];
SetPlotBGColor(1,4);

529

530

SetPlotColor

Assigns	a	specified	color	to	the	specified	plot	for	the	duration	of	the	current	bar.

Usage

SetPlotColor(PlotNumber,PlotColor)

Parameters

PlotNumber	-	a	numerical	expression	specifying	the	plot	number;	plot	numbers
range	from	1	to	999

PlotColor	-	an	expression	specifying	the	plot	color

Plot	color	can	be	specified	by	a	numerical	expression	representing	an	RGB	color
number	or	a	legacy	color	value,	or	by	one	of	17	base	color	words.

Example

Assign	the	color	of	blue	to	plot1	for	the	duration	of	the	current	bar:

SetPlotColor(1,Blue);

Assign	RGB	color	2138336	(Orange)	to	plot1	for	the	duration	of	the	current	bar:

SetPlotColor(1,2138336);

Assign	legacy	color	4	(Green)	to	plot1	for	the	duration	of	the	current	bar:

[LegacyColorValue=True];
SetPlotColor(1,4);

531

SetPlotWidth

Assigns	a	specified	line	width	to	the	specified	plot	for	the	duration	of	the	current
bar.

Usage

SetPlotWidth(PlotNumber,LineWidth)

Where:	PlotNumber	-	a	numerical	expression	specifying	the	plot	number;	plot
numbers	range	from	1	to	999	
													LineWidth	-	a	numerical	expression	specifying	the	plot	line	width;	line
width	can	range	from	1	to	14

Example

Assign	a	plot	line	width	of	10	to	plot1	for	the	duration	of	the	current	bar:

SetPlotWidth(1,10);

532

pmms_get_strategy_named_num
Returns	a	numerical	value,	indicating	the	value	of	VariableName	of	the	strategy
with	StrategyIndex	number.

Usage

pmms_get_strategy_named_num(StrategyIndex,	VariableName)

Parameters

StrategyIndex	-	numeric	variable.

VariableName	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_get_strategy_named_num(0,	"CustomVar")

533

pmms_get_strategy_named_str
Returns	a	string	value,	indicating	the	value	of	VariableName	of	the	strategy	with
StrategyIndex	number.

Usage

pmms_get_strategy_named_str(StrategyIndex,	VariableName)

Parameters

StrategyIndex	-	numeric	variable.

VariableName	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_get_strategy_named_str(0,	"CustomStr")

534

pmms_set_strategy_named_num
This	function	sets	the	value	of	VariableName	of	the	strategy	with	StrategyIndex
number.

Usage

pmms_set_strategy_named_num(StrategyIndex,	VariableName,	VariableValue)

Parameters

StrategyIndex	-	numeric	variable.

VariableName	-	string	variable.

VariableValue	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_set_strategy_named_num(0,	"CustomVar",	5)

535

pmms_set_strategy_named_str
This	function	sets	the	string	value	of	VariableName	of	the	strategy	with
StrategyIndex	number.

Usage

pmms_set_strategy_named_str(StrategyIndex,	VariableName,	VariableValue)

Parameters

StrategyIndex	-	numeric	variable.

VariableName	-	string	variable.

VariableValue	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_set_strategy_named_str(0,	"CustomStr",	"buy")

536

pmms_strategies_allow_entries_all
This	function	allows	all	the	strategies	to	open	positions.

Usage

pmms_strategies_allow_entries_all

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategies_allow_entries_all

537

pmms_strategies_count
Returns	a	numerical	value,	indicating	the	number	of	trading	strategies	(which	is
equal	to	number	of	downloaded	instruments	that	are	traded).

Usage

pmms_strategies_count

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategies_count

538

pmms_strategies_deny_entries_all
This	function	denies	all	the	strategies	to	open	positions	(entry	orders	will	be
excluded	from	RAW	orders	collection).

Usage

pmms_strategies_deny_entries_all

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategies_deny_entries_all

539

pmms_strategies_get_by_symbol_name
Returns	an	index	of	the	strategy	based	on	instrument	name	(-1,	if	the	instrument	is
not	found).	If	several	strategies	are	applied	to	the	same	instrument,	then	the	number
of	one	of	these	strategies	will	be	returned.

Usage

pmms_strategies_get_by_symbol_name(SymbolName)

Parameters

SymbolName	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Value1	=	pmms_strategies_get_by_symbol_name("MSFT");

540

pmms_strategies_in_long_count
Returns	a	numerical	value,	indicating	the	number	of	strategies	with	open	long
position.	Accepts	one	parameter	-	a	one	dimensional	dynamical	array.	This	array	is
filled	with	the	index	numbers	of	the	strategies	that	have	an	open	long	position	at	the
moment	of	the	strategy	calculation.

Usage

pmms_strategies_in_long_count(indexesArray)

Parameters

indexesArray	-	array	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

var:	positionsLong(0);

array:	strategyIndexes[](0);

positionsLong	=	pmms_strategies_in_long_count(strategyIndexes);

541

pmms_strategies_in_positions_count
Returns	a	numerical	value,	indicating	the	number	of	strategies	with	open	position.
Accepts	one	parameter	-	a	one	dimensional	dynamical	array.	This	array	is	filled
with	the	index	numbers	of	the	strategies	that	have	an	open	position	at	the	moment	of
the	strategy	calculation.

Usage

pmms_strategies_in_positions_count(indexesArray)

Parameters

indexesArray	-	array	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

var:	positions(0);

array:	strategyIndexes[](0);

positions	=	pmms_strategies_in_positions_count(strategyIndexes);

542

pmms_strategies_in_short_count
Returns	a	numerical	value,	indicating	the	number	of	strategies	with	open	short
position.	Accepts	one	parameter	-	a	one	dimensional	dynamical	array.	This	array	is
filled	with	the	index	numbers	of	the	strategies	that	have	an	open	short	position	at
the	moment	of	the	strategy	calculation.

Usage

pmms_strategies_in_short_count(indexesArray)

Parameters

indexesArray	-	array	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

var:	positionsShort(0);

array:	strategyIndexes[](0);

positionsShort	=	pmms_strategies_in_short_count(strategyIndexes);

543

pmms_strategies_pause_all
This	function	pauses	order	sending	for	all	strategies	of	the	portfolio.

Usage

pmms_strategies_pause_all

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategies_pause_all

544

pmms_strategies_resume_all
This	function	resumes	order	sending	for	all	strategies	of	the	portfolio.

Usage

pmms_strategies_resume_all

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategies_resume_all

545

pmms_strategies_set_status_for_all
This	function	sets	a	text	(string)	status	for	all	strategies	of	the	portfolio	(status	is
indicated	in	the	Custom	Text	column	of	Portfolio	Real-Time	Window).

Usage

pmms_strategies_set_status_for_all(Status)

Parameters

Status	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategies_set_status_for_all("Calculating")

546

pmms_strategy_allow_entries
This	function	allows	entry	orders	for	strategy	with	StrategyIndex	number.

Usage

pmms_strategy_allow_entries(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_allow_entries(0)

547

pmms_strategy_allow_exits
This	function	allows	exit	orders	for	strategy	with	StrategyIndex	number.

Usage

pmms_strategy_allow_exits(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_allow_exits(0)

548

pmms_strategy_allow_exit_from_long
The	same	as	pmms_strategy_allow_exits,	but	applied	for	exits	from	long	entries
only.

549

pmms_strategy_allow_exit_from_short
The	same	as	pmms_strategy_allow_exits,	but	applied	for	exits	from	short	entries
only.

550

pmms_strategy_allow_long_entries
The	same	as	pmms_strategy_allow_entries,	but	applied	for	long	entries	only.

551

pmms_strategy_allow_short_entries
The	same	as	pmms_strategy_allow_entries,	but	applied	for	short	entries	only.

552

pmms_strategy_close_position
This	function	closes	position	of	the	strategy	with	Index	number	with	market	order
(orders	generated	by	the	strategy	will	be	deleted	from	Raw	Orders	collection).

Usage

pmms_strategy_close_position(Index)

Parameters

Index	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_close_position(0)

553

pmms_strategy_currentcontracts
Returns	a	numerical	value	representing	number	of	contracts	of	the	position	opened
by	strategy	with	StrategyIndex	number.

Usage

pmms_strategy_currentcontracts(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Value1	=	pmms_strategy_currentcontracts(0);

554

pmms_strategy_deny_entries
This	function	denies	entry	orders	for	strategy	with	StrategyIndex	number	(entry
orders	will	be	deleted	from	Raw	Orders	collection).

Usage

pmms_strategy_deny_entries(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_deny_entries(0)

555

pmms_strategy_deny_exits
This	function	denies	exit	orders	for	strategy	with	StrategyIndex	number	(exit
orders	will	be	deleted	from	Raw	Orders	collection).

Usage

pmms_strategy_deny_exits(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_deny_exits(0)

556

pmms_strategy_deny_exit_from_long
The	same	as	pmms_strategy_deny_exits,	but	applied	for	exits	from	long	entries
only.

557

pmms_strategy_deny_exit_from_short
The	same	as	pmms_strategy_deny_exits,	but	applied	for	exits	form	short	entries
only.

558

pmms_strategy_deny_long_entries
The	same	as	pmms_strategy_deny_entries,	but	applied	for	long	entries	only.

559

pmms_strategy_deny_short_entries
The	same	as	pmms_strategy_deny_entries,	but	applied	for	short	entries	only.

560

pmms_strategy_entryprice
Returns	a	numerical	value	representing	an	average	entry	price	of	the	position
opened	by	the	strategy	with	StrategyIndex	number.

Usage

pmms_strategy_entryprice(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Value1	=	pmms_strategy_entryprice(0);

561

pmms_strategy_get_entry_contracts
Returns	the	number	of	contracts	of	the	entry	order	of	the	strategy	with
StrategyIndex	number.

Usage

pmms_strategy_get_entry_contracts(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_get_entry_contracts(0)

562

pmms_strategy_is_paused
Returns	true/false	value	indicating	if	order	sending	is	paused	for	the	strategy	with
StrategyIndex	number.

Usage

pmms_strategy_is_paused(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Condition1=pmms_strategy_is_paused(0);

563

pmms_strategy_marketposition
Returns	a	numerical	value	representing	market	position	of	the	strategy	with
StrategyIndex	number.

Usage

pmms_strategy_marketposition(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Value1=pmms_strategy_marketposition(0);

564

pmms_strategy_maxiddrawdown
Returns	a	numerical	value	representing	max	drawdown	of	the	strategy	with
StrategyIndex	number.

Usage

pmms_strategy_maxiddrawdown(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Value1	=	pmms_strategy_maxiddrawdown(0);

565

pmms_strategy_netprofit
Returns	a	numerical	value	representing	net	profit	of	the	strategy	with	StrategyIndex
number.

Usage

pmms_strategy_netprofit(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Value1	=	pmms_strategy_netprofit(0);

566

pmms_strategy_openprofit
Returns	a	numerical	value	representing	unrealized	profit/loss	of	the	strategy	with
StrategyIndex	number.

Usage

pmms_strategy_openprofit(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Value1	=	pmms_strategy_openprofit(0);

567

pmms_strategy_pause
This	function	denies	order	sending	for	the	strategy	with	StrategyIndex	number	(all
orders	of	the	strategy	will	be	deleted	from	Raw	Orders	Collection).

Usage

pmms_strategy_pause(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_pause(0);

568

pmms_strategy_resume
This	function	allows	order	sending	for	the	strategy	with	StrategyIndex	number	(all
orders	of	the	strategy	will	be	deleted	from	Raw	Orders	Collection).

Usage

pmms_strategy_resume(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_resume(0);

569

pmms_strategy_riskcapital
Returns	a	numerical	value	representing	amount	of	money	withheld	as	a	risk	capital
for	the	open	position	of	the	strategy	with	StrategyIndex	number.

Usage

pmms_strategy_riskcapital(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Value1	=	pmms_strategy_riskcapital(0);

570

pmms_strategy_set_entry_contracts
This	function	sets	the	number	of	contracts	for	entry	orders	of	the	strategy	with
StrategyIndex	number	(size	calculated	by	the	strategy	itself	will	be	ignored).	To	use
the	order	size	calculated	by	the	strategy	itself	set	contracts	parameter	to	-1.

Usage

pmms_strategy_set_entry_contracts(StrategyIndex,	Contracts)

Parameters

StrategyIndex	-	numeric	variable.

Contracts	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_set_entry_contracts(0,	5)

571

pmms_strategy_set_status
This	function	sets	a	text	(string)	status	for	the	strategy	with	StrategyIndex	number
of	the	portfolio	(status	is	indicated	in	the	Custom	Text	column	of	Portfolio	Real-
Time	Window).

Usage

pmms_strategy_set_status(StrategyIndex,	Status)

Parameters

StrategyIndex	-	numeric	variable.

Status	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_set_status("Long");

572

pmms_strategy_symbol
Returns	a	string	value	representing	the	name	of	instrument	to	which	the	signal	of
the	strategy	with	StrategyIndex	number	is	applied.

Usage

pmms_strategy_symbol(StrategyIndex)

Parameters

StrategyIndex	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmms_strategy_symbol(0);

573

pmm_get_global_named_num
Returns	a	numerical	value,	indicating	the	global	numerical	value	with
VariableName	name.

Usage

pmm_get_global_named_num(VariableName)

Parameters

VariableName	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Value1	=	pmm_get_global_named_num("GlobalVar");

574

pmm_get_global_named_str
Returns	the	global	string	value	with	VariableName	name.

Usage

pmm_get_global_named_str(VariableName)

Parameters

VariableName	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmm_get_global_named_str("GlobalStr");

575

pmm_get_my_named_num
Returns	a	numerical	value,	indicating	the	value	of	VariableName	of	the	current
strategy.

Usage

pmm_get_my_named_num(VariableName)

Parameters

VariableName	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Value1	=	pmm_get_my_named_num("CustomVar");

576

pmm_get_my_named_str
Returns	a	string	value,	indicating	the	value	of	VariableName	of	the	current	strategy.

Usage

pmm_get_my_named_str(VariableName)

Parameters

VariableName	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmm_get_my_named_str("CustomStr");

577

pmm_set_global_named_num
This	function	sets	the	global	numeric	value	with	VariableName	name.

Usage

pmm_set_global_named_num(VariableName,	VariableValue)

Parameters

VariableName	-	string	variable.

VariableValue	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmm_set_global_named_num("GlobalVar",	3);

578

pmm_set_global_named_str
This	function	sets	the	global	string	value	with	VariableName	name.

Usage

pmm_set_global_named_str(VariableName,	VariableValue)

Parameters

VariableName	-	string	variable.

VariableValue	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

if	marketposition	>	0	then	pmm_set_global_named_str("GlobalStr",
symbolname	+	"	is	Long");

579

pmm_set_my_named_num
This	function	sets	the	value	of	VariableName	of	the	current	strategy.

Usage

pmm_set_my_named_num(VariableName,	VariableValue)

Parameters

VariableName	-	string	variable.

VariableValue	-	numeric	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

pmm_set_my_named_num("MarketPosition",	marketposition);

580

pmm_set_my_named_str
This	function	sets	the	string	value	of	VariableName	of	the	current	strategy.

Usage

pmm_set_my_named_str(VariableName,	VariableValue)

Parameters

VariableName	-	string	variable.

VariableValue	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

if	marketposition	>	0	then	pmm_set_my_named_str("Position",	"Long");

581

pmm_set_my_status
This	function	sets	a	text	(string)	status	for	the	current	strategy	of	the	portfolio
(status	is	indicated	in	the	Custom	Text	column	of	Portfolio	Real-Time	Window).

Usage

pmm_set_my_status(Status)

Parameters

Status	-	string	variable.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

if	marketposition	<	0	then	pmm_set_my_status("Short");

582

Portfolio_GrossLoss
Returns	a	negative	numerical	value,	indicating	the	total	currency	value	of	all
completed	losing	trades	for	a	portfolio.

Usage

Portfolio_GrossLoss

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Portfolio_GrossLoss	will	return	a	value	of	-50	if	there	were	a	total	of	four	losing
trades,	at	10,	5,	20,	and	15

Portfolio_GrossLoss	will	return	a	value	of	0	if	no	losing	trades	were	completed
during	the	entire	trading	period

583

Portfolio_GrossProfit
Returns	a	numerical	value,	indicating	the	total	currency	value	of	all	completed
winning	trades	for	a	portfolio.

Usage

Portfolio_GrossProfit

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Portfolio_GrossProfit	will	return	a	value	of	50	if	there	were	a	total	of	four
winning	trades,	at	10,	5,	20,	and	15

Portfolio_GrossProfit	will	return	a	value	of	0	if	no	winning	trades	were
completed	during	the	entire	trading	period

584

Portfolio_InvestedCapital
Returns	absolute	value	indicating	the	amount	of	cash	assets	invested	in	portfolio
securities	on	the	moment	of	strategy	calculation.

Usage

Portfolio_InvestedCapital

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Portfolio_InvestedCapital	will	return	a	value	of	100	000	if	the	amount	of	cash
assets	invested	in	portfolio	securities	on	the	moment	of	strategy	calculation	is	100
000	units	of	the	selected	currency	(e.g.	there	are	three	open	positions:	50	000	long,
20	000	long	and	30	000	short).

585

Portfolio_MaxIDDrawdown
Returns	a	negative	numerical	value,	indicating	the	largest	decline	in	equity	for	the
entire	portfolio	during	the	trading	period.

Usage

Portfolio_MaxIDDrawdown

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Portfolio_MaxIDDrawdown	will	return	a	value	of	-500	if	the	largest	decline	in
equity	during	the	entire	trading	period	was	¤500

586

Portfolio_NetProfit
Returns	a	numerical	value,	indicating	the	total	currency	value	of	all	completed
trades	for	a	portfolio.

Usage

Portfolio_NetProfit

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Portfolio_NetProfit	will	return	a	value	of	20	if	there	were	winning	trades	at	25
and	10,	and	losing	trades	at	5	and	10

Portfolio_NetProfit	will	return	a	value	of	-15	if	there	were	winning	trades	at	10
and	5,	and	losing	trades	at	20	and	10

Portfolio_NetProfit	will	return	a	value	of	0	no	trades	were	completed	during
the	entire	trading	period

587

Portfolio_NumLossTrades
Returns	a	numerical	value,	indicating	the	number	of	all	completed	losing	trades	for
a	portfolio.

Usage

Portfolio_NumLossTrades

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Portfolio_NumLossTrades	will	return	a	value	of	5	if	there	were	a	total	of	five
completed	losing	trades

Portfolio_NumLossTrades	will	return	a	value	of	0	if	no	losing	trades	were
completed	during	the	entire	trading	period

588

Portfolio_NumWinTrades
Returns	a	numerical	value,	indicating	the	number	of	all	completed	winning	trades
for	a	portfolio.

Usage

Portfolio_NumWinTrades

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Portfolio_NumWinTrades	will	return	a	value	of	5	if	there	were	a	total	of	five
completed	winning	trades

Portfolio_NumWinTrades	will	return	a	value	of	0	if	no	winning	trades	were
completed	during	the	entire	trading	period

589

Portfolio_PercentProfit
Returns	a	numerical	value,	indicating	the	percentage	of	winning	trades	in	all	trades
completed	for	a	portfolio.

Usage

Portfolio_PercentProfit

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Portfolio_PercentProfit	will	return	a	value	of	70	if	seven	out	of	the	total	of	10
completed	trades	were	winning	trades

590

Portfolio_StrategyDrawdown
Returns	a	negative	numerical	value,	indicating	the	current	decline	in	equity	for	the
entire	portfolio	from	the	peak	value	for	the	entire	trading	period.

Usage

Portfolio_StrategyDrawdown

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Portfolio_StrategyDrawdown	will	return	a	value	of	-100	if	the	current	decline	in
equity	from	the	peak	value	is	¤100

591

Portfolio_TotalTrades
Returns	a	numerical	value,	indicating	the	total	number	of	all	completed	trades	for	a
portfolio.

Usage

Portfolio_TotalTrades

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Portfolio_TotalTrades	will	return	a	value	of	5	if	there	were	a	total	of	five
completed	trades

Portfolio_TotalTrades	will	return	a	value	of	0	if	no	trades	were	completed
during	the	entire	trading	period

592

Portfolio_CalcMaxPotentialLossForEntry
Calculates	and	returns	maximum	potential	loss	(not	including	margin,	commision
or	slippage)	if	user	entered	the	position	with	the	number	of	Contracts	and	Price
of	entry.

Usage

Portfolio_CalcMaxPotentialLossForEntry	(Side	<,Contracts	<,Price>>);

Parameters	inside	the	angled	brackets	are	optional

Parameters

Side	is	a	numerical	expression	specifying	the	entry	type	(e.g.	1	Long	entry	or	-1
Short	entry).

Contracts	is	an	optional	parameter	specifying	the	number	of	contracts.	If	the
Contracts	parameter	is	not	specified,	then	the	number	of	contracts	indicated	in	the
Format	Settings	dialog	window	under	the	Properties	tab	is	used	by	default.

Price	is	an	optional	parameter	specifying	the	price	value.	If	the	Price	parameter	is
not	specified,	then	the	Close	price	value	of	the	current	bar	will	be	used	by	default.
This	parameter	can	be	rounded	down	if	entered	a	Short	position	or	rounded	up	if
entered	a	Long	position.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Portfolio_CalcMaxPotentialLossForEntry	(0,	25,	High)	will	return	a	value	of
0,	since	the	parameter	Side=0

593

Portfolio_CalcMaxPotentialLossForEntry	(1,	100,	Close)	will	return	the
maximum	potential	loss	(not	including	margin,	commision	or	slippage)	if	user
entered	a	Long	position	for	100	contracts	at	the	Close	price.

Portfolio_CalcMaxPotentialLossForEntry	(-1,	5,	Open)	will	return	the
maximum	potential	loss	(not	including	margin,	commision	or	slippage)	if	user
entered	a	Short	position	for	5	contracts	at	Open	price.

Portfolio_CalcMaxPotentialLossForEntry	(1)	will	return	the	maximum
potential	loss	(not	including	margin,	commision	or	slippage)	if	the	user	entered	a
Long	position	for	a	number	of	contracts	indicated	in	the	Format	Settings	dialog
window	under	the	Properties	tab	at	Close	price.

594

Portfolio_CurrentEntries

Returns	a	numerical	value,	indicating	the	combined	number	of	entries	currently
open	within	a	portfolio.

Usage

Portfolio_CurrentEntries

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Assign	a	value,	indicating	the	combined	number	of	entries	currently	open	within	a
portfolio,	to	Value1	variable:

Value1=Portfolio_CurrentEntries;

595

Portfolio_MaxOpenPositionPotentialLoss
Returns	a	value	indicating	the	combined	potential	loss	(not	including	margin,
commision	or	slippage)	for	the	traded	symbol's	open	position	within	the	portfolio.

Usage

SetStopPosition;

SetStopLoss(Portfolio_MaxOpenPositionPotentialLoss);

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

value1	=	Portfolio_MaxOpenPositionPotentialLoss;

if	value1	<>	0	then	begin

SetStopPosition;

SetStopLoss	(value1);

end;

Portfolio_MaxOpenPositionPotentialLoss	will	return	a	value	of	0	if	there	are
currently	no	open	positions	within	a	portfolio.

Portfolio_MaxOpenPositionPotentialLoss	will	return	a	value	of	100	if	the
combined	potential	loss	for	all	open	positions	within	a	portfolio	is	¤100	since	the
positions	were	entered.

596

Portfolio_OpenPositionProfit

Returns	a	numerical	value,	indicating	the	current	combined	profit	or	loss	for	all
open	positions	within	a	portfolio.

Usage

Portfolio_OpenPositionProfit

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio
Settings	->	Base	Currency.

Example

Portfolio_OpenPositionProfit		will	return	a	value	of	0	if	there	are	currently	no
open	positions	within	a	portfolio

Portfolio_OpenPositionProfit		will	return	a	value	of	100	if	the	combined	value
of	all	open	positions	within	a	portfolio	has	increased	by	¤100	since	the	positions
were	entered

Portfolio_OpenPositionProfit		will	return	a	value	of	-50	if	the	combined	value
of	all	open	positions	within	a	portfolio	has	decreased	by	¤50	since	the	positions
were	entered

597

Portfolio_SetMaxPotentialLossPerContract
Redefines	the	values	for	the	indicated	symbol.	The	values	in	the	¤	box	if	the
Absolute	Max	Potential	Loss	option	is	selected	or	the	values	in	the	%	box	if	the
Max	Potential	Loss	is	selected.

The	newly	set	value	is	valid	during	the	strategy	calculation	or	until	the
Portfolio_SetMaxPotentialLossPerContract	is	requested	again	assigning	a
new	value.

Usage

Portfolio_SetMaxPotentialLossPerContract(NewValue);

Parameters

NewValue	is	a	numerical	value	that	can	be:

an	absolute	value	in	the	range	[-100,	-0.001];	defines	percentage	of	the
maximum	potential	loss	per	contract.	(Max	Potential	Loss:	%)
a	value	in	the	range	[0.001,	1e+29];	defines	the	maximum	potential	loss	per
contract	in	the	selected	currency.	(Absolute	Max	Potential	Loss:	¤)
equal	0;	in	this	case	the	value	entered	in	the	Format	Settings	dialog	window
under	the	Portfolio	Settings	tab	is	used.

Portfolio_SetMaxPotentialLossPerContract	returns:

True	if	the	value	is	in	one	of	the	ranges	indicated	above.	Redefining	is
considered	to	be	succesfull.
False	if	the	if	the	value	is	out	of	the	ranges	indicated	above.	Redefining	is
considered	unsuccessful	and	the	Max	Potential	Loss	value	is	unchanged.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	value	is	returned	in	the	currency	specified	in	Portfolio	Trader:	Portfolio

598

Settings	->	Base	Currency.

Example

If	"MSFT"=SymbolName	then	Portfolio_SetMaxPotentialLossPerContract
(-10);	the	new	value	of	-10	is	assigned	for	the	symbol	"MSFT"	only	if	such	symbol
is	exist	in	the	portfolio.

Portfolio_SetMaxPotentialLossPerContract	(-5);	redefines	the	percentage
value	of	the	maximum	potential	loss	per	contract	for	5%.

Portfolio_SetMaxPotentialLossPerContract	(200);	redefines	the	maximum
potential	loss	per	contract	for	¤200.

599

PortfolioEntriesPriority
Assigns	a	priority	to	each	entry	order	within	a	portfolio.

If	execution	of	all	entries	generated	for	a	portfolio	would	cause	the	capital	limits	to
be	exceeded,	the	entries	with	the	highest	priority	will	receive	preference,	while	the
entries	with	the	lowest	priority	will	not	be	executed.

If	PortfolioEntriesPriority	is	not	specified,	the	entries	will	be	executed	according	to
the	order	the	symbols	are	listed	in	the	symbol	grid	of	the	Portfolio	Trader.

Usage

PortfolioEntriesPriority=Priority

Where:	Priority	-	a	numerical	expression	specifying	the	entry	order	execution
priority;	a	greater	value	indicates	a	higher	priority

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Assign	higher	execution	priority	to	entry	orders	for	symbols	with	lower	share
prices:

PortfolioEntriesPriority=(-Close);

600

Portfolio_GetMarginPerContract
Returns:

a	numerical	value	indicated	in	the	%	of	contract	cost	box	multiplied	by	-1,	if
the	Margin	value	option	is	selected;	or:
the	same	value	as	a	reserved	word	Margin	if	the	Absolute	Margin	Value
option	is	selected.

Usage

Portfolio_GetMarginPerContract

Parameters

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	absolute	margin	value	is	returned	in	the	currency	specified	in	Portfolio
Trader:	Portfolio	Settings	->	Base	Currency.

Example

Portfolio_GetMarginPerContract	will	return	a	value	of	0	if	Absolute	Margin
Value	option	is	selected	and	the	margin	does	not	exist	in	the	QuoteManager	symbol
settings.	Not	all	of	the	securities	can	be	bought	on	margin.	The	margin	value	can	be
returned	for	futures	or	options.

Portfolio_GetMarginPerContract	will	return	a	value	of	25	if	Absolute	Margin
Value	option	is	selected	and	the	margin	box	in	the	Edit	Symbol	dialog	window
under	Future	tab	in	QuoteManager	contains	the	value	of	25.

601

Portfolio_GetMarginPerContract	will	return	a	value	of	-10	if	the	Margin	Value
option	is	selected	and	the	%	of	contract	cost	box	contains	the	value	of	10.

602

Portfolio_GetMaxPotentialLossPerContract
Returns:

a	numerical	value	indicated	in	the	%	box	multiplied	by	-1,	if	the	Max
Potential	Loss	option	is	selected	in	the	Format	Settings	dialog	window
under	the	Portfolio	Settings	tab;	or:
a	numerical	value	indicated	in	the	Absolute	Max	Potential	Loss	option	box	in
the	Format	Settings	dialog	window	under	the	Portfolio	Settings	tab.

Usage

Portfolio_GetMaxPotentialLossPerContract

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

The	absolute	max	potential	loss	value	is	returned	in	the	currency	specified	in
Portfolio	Trader:	Portfolio	Settings	->	Base	Currency.

Example

Portfolio_GetMaxPotentialLossPerContract	will	return	-5	if	the	Max
Potential	Loss	option	is	selected	and	%	box	value	is	5	under	the	Portfolio
Settings	tab	in	the	Format	Settings	dialog	window.

Portfolio_GetMaxPotentialLossPerContract	will	return	0.001	if	the	Absolute
Max	Potential	Loss	option	is	selected	and	¤	box	value	is	0.001	under	the	Portfolio
Settings	tab	in	the	Format	Settings	dialog	window.

603

Portfolio_MaxRiskEquityPerPosPercent
Returns	the	Max	%	of	Equity	at	Risk	per	Position		numerical	value	set	by	the	user	in
the	Portfolio	Settings	tab	of	the	Portfolio	Trader	Format	Settings	window.

Usage

Portfolio_MaxRiskEquityPerPosPercent

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Portfolio_MaxRiskEquityPerPosPercent		will	return	the	Max	%	of	Equity	at
Risk	per	Position		numerical	value	set	by	the	user

604

Portfolio_TotalMaxRiskEquityPercent
Returns	the	equity	Exposure	%		numerical	value	set	by	the	user	in	the	Portfolio
Settings	tab	of	the	Portfolio	Trader	Format	Settings	window.

Usage

Portfolio_TotalMaxRiskEquityPercent

Notes

This	function	can	only	be	used	in	signals	intended	to	be	used	with	the	Portfolio
Trader.

Example

Portfolio_TotalMaxRiskEquityPercent		will	return	the	equity	Exposure	%	
numerical	value	set	by	the	user.

605

AskSize
Returns	a	numerical	value	indicating	the	current	best	Ask	volume	for	the	symbol
that	the	study	is	applied	to.

Usage

AskSize

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

AskSize		will	return	the	current	best	Ask	volume

606

BidSize
Returns	a	numerical	value	indicating	the	current	best	Bid	volume	for	the	symbol
that	the	study	is	applied	to.

Usage

BidSize

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

BidSize		will	return	the	current	best	Bid	volume

607

CurrentOpenInt
Returns	a	numerical	value	indicating	the	last	known	open	interest	for	the	symbol
that	the	study	is	applied	to.

Usage

CurrentOpenInt

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

CurrentOpenInt		will	return	the	last	known	open	interest

608

DailyClose
Returns	a	numerical	value	indicating	the	most	recent	Close	price.

Usage

DailyClose

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

DailyClose		will	return	the	most	recent	Close	price

609

DailyHigh
Returns	a	numerical	value	indicating	the	High	price	for	the	current	trading	session.

Usage

DailyHigh

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

DailyHigh		will	return	the	High	price	for	the	current	trading	session

610

DailyLow
Returns	a	numerical	value	indicating	the	Low	price	for	the	current	trading	session.

Usage

DailyLow

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

DailyLow		will	return	the	Low	price	for	the	current	trading	session

611

DailyOpen
Returns	a	numerical	value	indicating	the	opening	price	for	the	current	trading
session.

Usage

DailyOpen

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

DailyOpen		will	return	the	Open	price	for	the	current	trading	session

612

DailyVolume
Returns	a	numerical	value	indicating	the	current	total	trade	volume	for	the	trading
session.

Usage

DailyVolume

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

DailyVolume		will	return	the	current	total	trade	volume

613

Description
Returns	a	string	expression	containing	the	description	for	the	symbol	that	the	study
is	applied	to;	if	no	description	is	available,	a	blank	("")	string	expression	will	be
returned.

Usage

Description

Example

Description		will	return	"GOOGLE	INC"	for	Google

614

ExchListed
Returns	a	string	expression	containing	the	exchange	name	for	the	symbol	that	the
study	is	applied	to.

Usage

ExchListed

Example

ExchListed		will	return	"NASD"	for	Google

ExchListed		will	return	"CME"	for	E-mini	S&P;	500

615

InsideAsk
Returns	a	numerical	value	indicating	the	current	best	Ask	for	the	symbol	that	the
study	is	applied	to.

Usage

InsideAsk

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

InsideAsk		will	return	the	current	best	Ask

616

InsideBid
Returns	a	numerical	value	indicating	the	current	best	Bid	for	the	symbol	that	the
study	is	applied	to.

Usage

InsideBid

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

InsideBid		will	return	the	current	best	Bid

617

Last
Returns	a	numerical	value	indicating	the	price	of	the	last	completed	trade.

Usage

Last

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

Last		will	return	the	price	of	the	last	trade

618

PrevClose
Returns	a	numerical	value	indicating	the	closing	price	of	the	previous	trading
session.

Usage

PrevClose

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

PrevClose		will	return	the	Close	of	the	previous	trading	session

619

q_Ask
Retained	for	backward	compatibility;	replaced	with	InsideAsk.

620

q_asksize
Retained	for	backward	compatibility;	replaced	with	AskSize.

621

q_Bid
Retained	for	backward	compatibility;	replaced	with	InsideBid.

622

q_bidsize
Retained	for	backward	compatibility;	replaced	with	BidSize.

623

q_BigPointValue
Retained	for	backward	compatibility;	replaced	with	BigPointValue.

624

q_Date
Retained	for	backward	compatibility;	replaced	with	TradedDate.

625

q_ExchangeListed
Retained	for	backward	compatibility;	replaced	with	ExchListed.

626

q_Last
Retained	for	backward	compatibility;	replaced	with	Last.

627

q_OpenInterest
Retained	for	backward	compatibility;	replaced	with	CurrentOpenInt.

628

q_PreviousClose
Retained	for	backward	compatibility;	replaced	with	PrevClose.

629

q_Time
Retained	for	backward	compatibility;	replaced	with	TradeTime.

630

q_Time_Dt
Returns	a	double-precision	decimal	DateTime	value	indicating	current	time	from
the	status	line.

Usage

q_Time_Dt

Example

q_Time_Dt		will	return	a	value	of	39448.25000000	for	6:00	AM	on	January	1st,
2008

631

q_Time_s
Same	as	q_Time.

Time	is	indicated	in	HHmmss	format.

632

q_TotalVolume
Retained	for	backward	compatibility;	replaced	with	DailyVolume.

633

q_tradevolume
Retained	for	backward	compatibility;	same	as	TradeVolume.

634

RTSymbol
Same	as	the	RTSymbolName.

635

RTSymbolName
Returns	a	string	expression	containing	the	name	of	the	real-time	symbol	that	the
study	is	applied	to	in	case	the	merging	option	is	enabled.	If	the	merging	option	is
disabled	returns	the	same	value	as	the	Name	property.	In	case	of	a	custom	futures
instrument	the	name	of	the	last	contract	is	returned.

See	also	GetRTSymbolName

Usage

RTSymbolName

Example

RTSymbolName		will	return	"GOOG"	for	Google	if	the	merging	option	is	enabled
and	Google	is	configured	as	the	real-time	instrument.

636

Symbol
Same	as	the	SymbolName.

637

SymbolName
Returns	a	string	expression	containing	the	name	of	the	symbol	that	the	study	is
applied	to.

See	also	GetSymbolName

Usage

SymbolName

Example

SymbolName		will	return	"GOOG"	for	Google

638

TradeDate

Returns	a	numerical	value	indicating	the	date	of	the	most	recent	price	field	update
for	the	symbol.	The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

TradeDate

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

TradeDate		will	return	a	value	of	1071030	for	October	30th,	2007

TradeDate		will	return	a	value	of	990402	for	April	2th,	1999

639

TradeTime

Returns	a	numerical	value	indicating	the	time	of	the	most	recent	price	field	update
for	the	symbol.	The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=
1:00	PM.

Usage

TradeTime

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

TradeTime		will	return	a	value	of	1015	for	10:15	AM

TradeTime		will	return	a	value	of	1545	for	3:45	PM

640

TradeVolume
Returns	a	numerical	value	indicating	the	volume	of	Last	Price.	Information	is	taken
from	the	Status	Line.

Usage

TradeVolume

Notes

Quote	Fields	cannot	be	referenced	historically.

Example

TradeVolume		will	return	the	value	of	5	if	Last	Size	was	5.

641

AutoSession
Returns	0	and	is	used	as	an	argument	in	session	information	functions.

642

RegularSession
Returns	1	and	is	used	as	an	argument	in	session	information	functions.

643

Sess1EndTime
This	word	is	retained	for	backward	compatibility.

644

Sess1FirstBarTime
Returns	the	First	bar's	time	for	the	first	session	of	the	trading	day	in	24-hour
format.	Please	note	that	the	Time	Zone	setting	affects	the	value	returned.

Example

Sess1FirstBarTime		returns	0945	when	applied	to	MSFT	data	with	a	15-minute
interval

Sess1FirstBarTime		returns	0835	when	applied	to	E-mini	S&P500;	Data	with	a	5-
minute	interval

645

Sess1StartTime
This	word	is	retained	for	backward	compatibility.

646

Sess2EndTime
This	word	is	retained	for	backward	compatibility.

647

Sess2FirstBarTime
Returns	the	First	bar s	time	for	the	second	session	of	the	trading	day	in	24-hour
format.	Please	note	that	the	Time	Zone	setting	affects	the	value	returned.

Example

Sess2FirstBarTime		returns	1725	when	applied	to	US	Treasury	Bond	Data	with	a
5-minute	interval.

648

Sess2StartTime
This	word	is	retained	for	backward	compatibility.

649

SessionCount
Returns	the	number	of	sessions	for	the	trading	week.

Usage

SessionCount(SessionType);

Where:	SessionType	-	a	numerical	expression:	0	=	Auto	Detect,	1	=	Regular
Session*

*	Custom	Sessions	parameters	will	be	used	if	selected	in	QuoteManager.

Example

In	this	example,	we	have	assigned	to	Value	1	the	total	number	of	sessions	for	the
week	in	the	current	bar.

Value1	=	SessionCount(0);	

In	this	example,	we	have	assigned	to	Value	1	the	total	number	of	regular	sessions
for	the	week	in	the	current	bar.

Value1	=	SessionCount(1);

650

SessionCountMS
Returns	the	number	of	merged	sessions	for	the	trading	week.	Merged	sessions	are
sessions	beginning	at	the	earliest	start	time	for	all	symbols	and	ending	at	the	latest
end	time	for	all	symbols	each	trading	day.

Example

In	this	example,	we	have	assigned	to	Value1	the	total	number	of	merged	sessions
for	the	week	in	the	current	chart:

Value1=SessionCountMS

651

SessionEndDay
Returns	a	numerical	value	indicating	the	day	of	the	week	that	the	specified	session
ends,	where	0	=	Sunday,	1	=	Monday,	etc.

Usage

SessionEndDay(SessionType,SessionNum)	

Where:	SessionType	-	a	numerical	expression:	0	=	Auto	Detect,	1	=	Regular
Session*	
													SessionNum	-	a	numerical	expression	specifying	the	Session	Number

*	Custom	Sessions	parameters	will	be	used	if	selected	in	QuoteManager.

Example

Assign	a	value,	indicating	the	day	of	the	week	that	the	4th	regular	session	ends,	to
Value1	variable:

Value1=SessionEndDay(1,4)

652

SessionEndDayMS
Returns	a	numerical	value	indicating	the	day	of	the	week	the	specified	merged
session	in	a	multi-data	series	chart	ends,	where	0	=	Sunday,	1	=	Monday,	etc.

Merged	session	extends	from	the	earliest	start	time	to	the	latest	end	time	of	all
sessions	merged.

Usage

SessionEndDayMS(SessionNum)

Where:	SessionNum	-	a	numerical	expression	specifying	the	Session	Number

Example

Assign	a	value,	indicating	the	day	of	the	week	that	the	4th	merged	session	ends,	to
Value1	variable:

Value1	=	SessionEndDayMS(4);

653

SessionEndTime

Returns	a	numerical	value,	indicating	the	time	of	the	day	that	the	specified	session
ends.	The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

SessionEndTime(SessionType,SessionNum)

Where:	SessionType		-	a	numerical	expression:	0	=	Auto	Detect,	1	=	Regular
Session*	
													SessionNum		-	a	numerical	expression	specifying	the	Session	Number

*	Custom	Sessions	parameters	will	be	used	if	selected	in	QuoteManager.

Example

Assign	a	value,	indicating	the	time	of	the	day	that	the	4th	regular	session	ends,	to
Value1	variable:

Value1	=	SessionEndTime(1,4);

654

SessionEndTimeMS

Returns	a	numerical	value,	indicating	the	time	of	the	day	that	the	specified	merged
session	in	a	multi-data	series	chart	ends.	The	time	is	indicated	in	the	24-hour
HHmm	format,	where	1300	=	1:00	PM.

Merged	session	extends	from	the	earliest	start	time	to	the	latest	end	time	of	all
sessions	merged.

Usage

SessionEndTimeMS(SessionNum)

Where:	SessionNum	-	a	numerical	expression	specifying	the	Session	Number

Example

Assign	a	value,	indicating	the	time	of	the	day	that	the	4th	merged	session	ends,	to
Value1	variable:

Value1	=	SessionEnd(4);

655

SessionStartDay
Returns	a	numerical	value	indicating	the	day	of	the	week	that	the	specified	session
starts,	where	0	=	Sunday,	1	=	Monday,	etc.

Usage

SessionStartDay(SessionType,SessionNum)

Where:	SessionType		-	a	numerical	expression:	0	=	Auto	Detect,	1	=	Regular
Session*
													SessionNum		-	a	numerical	expression	specifying	the	Session	Number

*	Custom	Sessions	parameters	will	be	used	if	selected	in	QuoteManager.

Example

Assign	a	value,	indicating	the	day	of	the	week	that	the	4th	regular	session	starts,	to
Value1	variable:

Value1	=	SessionStartDay(1,4);

656

SessionStartDayMS
Returns	a	numerical	value	indicating	the	day	of	the	week	that	the	specified	merged
session	in	a	multi-data	series	chart	starts,	where	0	=	Sunday,	1	=	Monday,	etc.

Merged	session	extends	from	the	earliest	start	time	to	the	latest	end	time	of	all
sessions	merged.

Usage

SessionStartDayMS(SessionNum)

Where:	SessionNum	-	a	numerical	expression	specifying	the	Session	Number

Example

Assign	a	value,	indicating	the	day	of	the	week	that	the	4th	merged	session	starts,	to
Value1	variable:

Value1	=	SessionStartDayMS(4);

657

SessionStartTime

Returns	a	numerical	value,	indicating	the	time	of	the	day	that	the	specified	session
starts.	The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

SessionStartTime(SessionType,SessionNum)

Where:	SessionType		-	a	numerical	expression:	0	=	Auto	Detect,	1	=	Regular
Session*	
													SessionNum		-	a	numerical	expression	specifying	the	Session	Number

*	Custom	Sessions	parameters	will	be	used	if	selected	in	QuoteManager.

Example

Assign	a	value,	indicating	the	time	of	the	day	that	the	4th	regular	session	starts,	to
Value1	variable:

Value1	=	SessionStartTime(1,4);

658

SessionStartTimeMS

Returns	a	numerical	value,	indicating	the	time	of	the	day	that	the	specified	merged
session	in	a	multi-data	series	chart	starts.	The	time	is	indicated	in	the	24-hour
HHmm	format,	where	1300	=	1:00	PM.

Merged	session	extends	from	the	earliest	start	time	to	the	latest	end	time	of	all
sessions	merged.

Usage

SessionStartTimeMS(SessionNum)

Where:	SessionNum	-	a	numerical	expression	specifying	the	Session	Number

Example

Assign	a	value,	indicating	the	time	of	day	that	the	4th	merged	session	starts,	to
Value1	variable:

Value1	=	SessionStartTimeMS(4);

659

A
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")	Next
Bar	at	the	Market;

660

An
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

661

At
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

662

Based
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

663

By
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

664

Does
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

665

From
A	skip	word;	used	in	strategy	exit	statements	in	combination	with	Entry	word	that
ties	an	exit	to	the	particular	entry	that	was	assigned	the	EntryLabel	name.

An	exit	can	only	be	tied	to	an	entry	within	the	same	signal;	for	more	information,
see	Buy	or	SellShort.

Skip	Words	serve	solely	to	improve	the	readability	of	PowerLanguage	code	and
are	skipped	(ignored)	during	the	compilation	and	execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Usage

From	Entry("EntryLabel")

Where:	EntryLabel	-	the	name	that	was	assigned	to	the	entry	that	the	exit	is	to	be
tied	to
													From	-	a	skip	word	and	can	be	omitted

Example

Completely	exit	from	the	long	position	established	by	the	entry	labeled	"Original
Entry",	at	Market	price	on	open	of	next	bar:

Sell	From	Entry("Original	Entry")Next	Bar	at	Open;

666

Is
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

667

Of
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

668

On
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

669

Place
A	Skip	Word	retained	for	backward	compatibility.	Skip	Words	serve	solely	to
improve	the	readability	of	PowerLanguage	code	and	are	skipped	(ignored)	during
the	compilation	and	execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

670

Than
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

671

The
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

672

Was
A	Skip	Word.	Skip	Words	serve	solely	to	improve	the	readability	of
PowerLanguage	code	and	are	skipped	(ignored)	during	the	compilation	and
execution.

The	use	of	Skip	Words	is	optional;	they	can	be	inserted	anywhere	within	the	PL
code	and	will	appear	in	red	in	PowerLanguage	Editor.

Example

The	Skip	Words	in	the	example	below	are	colored	in	red:

If	an	Open	is	<	than	Close	of	4	Bars	Ago	was	Then	Buy	This	Bar	on	Close;
If	Plot1	does	Cross	Above	a	1350	Then	Sell	From	Entry("My	Entry")Next
Bar	at	the	Market;

673

All

Used	in	strategy	exit	statements	in	place	of	a	numerical	expression,	preceding	the
words	Shares	or	Contracts,	to	denote	all	of	the	shares	or	all	of	the	contracts	held
without	specifying	the	actual	number	of	shares	or	contracts.

Usage

All	Contracts

Example

Sell	all	of	the	shares	held	at	market	price	on	open	of	next	bar:

Sell	All	Shares	Next	Bar	At	Market;

674

Buy
Enters	a	long	position	as	specified	by	the	parameters.

The	entry	point	is	visually	indicated	on	a	chart	by	an	Arrow	and	a	Tick.	The	Arrow
identifies	the	time	and	the	Tick	identifies	the	price	value	of	the	entry	point.	Labels,
displaying	the	entry	name	and	the	number	of	contracts	or	shares	traded,	are
displayed	below	the	Buy	Arrow.

An	order	is	executed	at	the	point	specified	by	the	parameters;	if	the	order	is	not
filled	within	the	specified	bar,	the	order	is	cancelled.

When	a	Buy	order	is	filled,	any	open	short	positions	will	also	be	closed.

Usage

Buy[("EntryLabel")][TradeSize]EntryType;

Parameters	inside	the	square	brackets	are	optional

Parameters	
EntryLabel	-	an	optional	parameter;	assigns	a	name	that	will	be	displayed	in	the
name	label	below	the	entry,	and	can	be	used	to	identify	the	particular	entry	and	to
tie	an	exit	to	it.

An	exit	can	only	be	tied	to	an	entry	within	the	same	signal;	for	more	information,
see	Sell.

If	EntryLabel	is	not	specified,	the	name	"Buy"	will	be	used	for	the	first	entry,
"Buy#2"	for	the	second	entry,	"Buy#3"	for	the	third	entry,	etc.

TradeSize	-	an	optional	parameter;	a	numerical	expression,	specifying	the	number
of	contracts	or	shares	to	buy;	the	expression	must	be	followed	by	one	of	the
following	transposable	words:	Share,	Shares,	Contract	or	Contracts.

If	TradeSize	value	equals	0	or	is	negative,	a	long	position	will	not	be	entered	but
any	open	short	positions	will	be	closed.

If	TradeSize	is	not	specified,	the	trade	size	value	set	by	the	user	in	the	Properties

675

tab	of	the	Strategy	Properties	window	will	be	used.

EntryType	-	a	required	parameter;	specifies	the	timing	and	price	of	entry.	

There	are	four	kinds	of	EntryType:	

This	Bar[On]Close

Where:	-	On		is	a	skip	word	and	can	be	omitted

A	Buy	Arrow	will	be	placed	at	the	current	bar's	Close	tick.	

Next	Bar[At]Open		or		Next	Bar[At]Market

Where:	-	words	"Market"	and	"Open"	are	transposable
													-	At		is	a	skip	word	and	can	be	omitted

A	Buy	Arrow	will	be	placed	at	the	next	bar's	Open	tick.	

Next	Bar[At]Price		Limit

Where:	-	Price		is	a	numerical	expression,	specifying	the	Limit	Price
													-	At		is	a	skip	word	and	can	be	omitted

A	Buy	Arrow	will	be	placed	on	the	next	bar	at	the	first	tick	with	a	price	value	less
than	or	equal	to	Price	;	if	there	are	no	such	ticks	within	the	next	bar,	the	order	will
be	cancelled.

Next	Bar[At]Price		Stop

Where:	-	Price		is	a	numerical	expression,	specifying	the	Stop	Price
													-	At		is	a	skip	word	and	can	be	omitted

A	Buy	Arrow	will	be	placed	on	the	next	bar	at	the	first	tick	with	a	price	value	equal
to	or	greater	than	the	Price	;	if	there	are	no	such	ticks	within	the	next	bar,	the	order
will	be	cancelled.

Example

676

Buy	a	user-set	number	of	shares	at	Market	price	on	close	of	this	bar:

Buy	This	Bar	On	Close;	

Buy	1	share	at	Market	price	on	open	of	next	bar	and	label	the	entry	"Entry":

Buy("Entry")1	Share	Next	Bar	At	Open;	

Buy	1	contract	at	Market	price	on	open	of	next	bar	and	label	the	entry	"Entry":

Buy("Entry")1	Contract	Next	Bar	Market;	

Buy	2	shares	within	the	next	bar	on	the	first	tick	with	a	price	of	100	or	less:

Buy	2	Shares	Next	Bar	At	100	Limit;	

Buy	10	contracts	within	the	next	bar	on	the	first	tick	with	a	price	of	50	or	more:

Buy	10	Contracts	Next	Bar	50	Stop;	

677

BuyToCover
Completely	or	partially	exits	one	or	all	of	the	short	entries	as	specified	by	the
parameters.

The	exit	point	is	visually	indicated	on	a	chart	by	an	Arrow	and	a	Tick.	The	Arrow
identifies	the	time	and	the	Tick	identifies	the	price	value	of	the	exit	point.	Labels,
displaying	the	exit	name	and	the	number	of	contracts	or	shares	traded,	are
displayed	below	the	Cover	Arrow.

An	order	is	executed	at	the	point	specified	by	the	parameters;	if	the	order	is	not
filled	within	the	specified	bar,	the	order	is	cancelled.

Usage

BuyToCover[("ExitLabel")][From	Entry("EntryLabel")][TradeSize[Total]]Exit

or:

Buy	To	Cover[("ExitLabel")][From	Entry("EntryLabel")]
[TradeSize[Total]]Exit

Parameters	inside	the	square	brackets	are	optional

Parameters

ExitLabel	-	an	optional	parameter;	assigns	a	name	that	will	be	displayed	in	the
name	label	above	the	exit

If	ExitLabel	is	not	specified,	the	name	"Cover"	will	be	used	for	the	first	exit,
"Cover#2"	for	the	second	exit,	"Cover#3"	for	the	third	exit,	etc.	

EntryLabel	-	an	optional	parameter;	ties	the	exit	to	the	particular	entry	that	was
assigned	the	EntryLabel	name;	the	name	must	be	preceded	by	the	word	Entry,	the
word	From	is	a	skip	word	and	can	be	omitted

An	exit	can	only	be	tied	to	an	entry	within	the	same	signal.	For	more	information,
see	SellShort

If	EntryLabel	is	not	specified,	all	of	the	open	short	entries	will	be	closed.	

678

TradeSize	-	an	optional	parameter;	a	numerical	expression,	specifying	the	number
of	contracts	or	shares	to	buy;	the	expression	must	be	followed	by	one	of	the
following	transposable	words:	Share,	Shares,	Contract	or	Contracts.

By	default,	the	number	of	contracts	or	shares	specified	by	the	TradeSize	
parameter	will	be	covered	from	each	of	the	open	short	entries.

If	TradeSize	is	followed	by	the	word	Total,	only	the	number	of	contracts	or
shares	specified	by	the	TradeSize		parameter	will	be	covered,	regardless	of	the
number	of	open	short	entries.	The	contracts	or	shares	will	be	covered	in	the	same
order	they	were	shorted:	First	In,	First	Out.

If	TradeSize	is	not	specified,	the	entire	short	position	will	be	closed	out.	

Exit	-	a	required	parameter;	specifies	the	timing	and	price	of	exit.	

There	are	four	types	of	Exit:	

This	Bar[On]Close

Where:	-	On		is	a	skip	word	and	can	be	omitted

A	Cover	Arrow	will	be	placed	at	the	current	bar's	Close	tick.	

Next	Bar[At]Open		or		Next	Bar[At]Market

Where:	-	words	"Market"	and	"Open"	are	transposable
													-	At		is	a	skip	word	and	can	be	omitted

A	Cover	Arrow	will	be	placed	at	the	next	bar's	Open	tick.	

Next	Bar[At]Price		Limit

Where:	-	Price		is	a	numerical	expression,	specifying	the	Limit	Price
													-	At		is	a	skip	word	and	can	be	omitted

A	Cover	Arrow	will	be	placed	on	the	next	bar	at	the	first	tick	with	a	price	value	less
than	or	equal	to	Price	;	if	there	are	no	such	ticks	within	the	next	bar,	the	order	will
be	cancelled.

679

Next	Bar[At]Price		Stop

Where:	-	Price		is	a	numerical	expression,	specifying	the	Stop	Price
													-	At		is	a	skip	word	and	can	be	omitted

A	Cover	Arrow	will	be	placed	on	the	next	bar	at	the	first	tick	with	a	price	value
equal	to	or	greater	than	the	Price	;	if	there	are	no	such	ticks	within	the	next	bar,	the
order	will	be	cancelled.

Example

Completely	exit	all	open	short	entries	at	Market	price	on	close	of	this	bar	and	label
the	exit	"Complete	Exit":

BuyToCover("Complete	Exit")This	Bar	On	Close;	

Completely	exit	from	the	short	position	established	by	the	entry	labeled	"Original
Entry",	at	Market	price	on	open	of	next	bar:

BuyToCover	From	Entry("Original	Entry")Next	Bar	At	Open;	

Cover	10	shares	of	the	short	position	established	by	the	entry	labeled	"Original
Entry",	at	Market	price	on	open	of	next	bar:

BuyToCover	Entry("Original	Entry")10	Shares	Next	Bar	At	Market;	

Cover	5	contracts	for	each	one	of	the	open	short	entries	at	Market	price	on	open	of
next	bar:

BuyToCover	5	Contracts	Next	Bar	Market;	

Cover	a	total	of	1	share,	regardless	of	the	number	of	open	short	entries,	within	the
next	bar	on	the	first	tick	with	a	price	of	100	or	less	(the	first	share	shorted	will	be
covered	if	the	price	is	met):

BuyToCover	1	Share	Total	Next	Bar	At	100	Limit;	

Completely	exit	all	short	entries	within	the	next	bar	on	the	first	tick	with	a	price	of
50	or	more:

BuyToCover	Next	Bar	50	Stop;

680

681

Contract
Same	as	Contracts

682

Contracts
Used	in	strategy	entry	or	exit	statements	in	combination	with	a	numerical
expression	to	specify	the	number	of	contracts	or	shares	to	trade.

Usage

TradeSize	Contracts

Where:	TradeSize	-	a	numerical	expression,	specifying	the	number	of	contracts	or
shares

Example

Buy	2	contracts	at	Market	price	on	open	of	next	bar:

Buy	2	Contracts	Next	Bar	At	Market;

683

Cover

Used	in	combination	with	the	words	Buy	To;	same	as	BuyToCover.

Usage

Buy	To	Cover[("ExitLabel")][From	Entry("EntryLabel")]
[TradeSize[Total]]Exit;

684

Entry
Used	in	strategy	exit	statements	to	tie	an	exit	to	the	particular	entry	that	was
assigned	the	EntryLabel	name.

An	exit	can	only	be	tied	to	an	entry	within	the	same	signal;	for	more	information,
see	Buy	or	SellShort.

Usage

From	Entry("EntryLabel")

Where:	EntryLabel	-	the	name	that	was	assigned	to	the	entry	that	the	exit	is	to	be
tied	to
													From	-	a	skip	word	and	can	be	omitted

Example

Completely	exit	from	the	long	position	established	by	the	entry	labeled	"Original
Entry",	at	Market	price	on	open	of	next	bar:

Sell	From	Entry("Original	Entry")Next	Bar	At	Open;

685

Higher

Used	in	strategy	entry	or	exit	statements	to	specify	a	price	range	for	an	entry	or	an
exit;	must	be	preceded	by	the	word	Or.

Usage

At	Price	Or	Higher

Where:	Price	-	a	numerical	expression,	specifying	the	base	Price	
													At	-	a	skip	word	and	can	be	omitted

Notes

At	Price	Or	Higher	is	an	equivalent	of	a	Limit	when	used	with	Sell	or	SellShort
statements,	and	an	equivalent	of	a	Stop	when	used	with	Buy	or	BuyToCover
statements.

Example

Buy	within	the	next	bar	on	the	first	tick	with	a	price	of	100	or	more:

Buy	Next	Bar	At	100	Or	Higher;	

Sell	short	within	the	next	bar	on	the	first	tick	with	a	price	of	50	or	more:

SellShort	Next	Bar	At	50	Or	Higher;

686

Limit
Used	in	strategy	entry	or	exit	statements	to	specify	a	Limit	price	for	an	entry	or	an
exit.

A	Limit	order	will	execute	at	the	specified	price	or	better.	A	better	price	is	a	lower
price	for	Buy	and	Buy	to	cover	orders,	and	a	higher	price	for	Sell	and	Sell	short
orders.

Usage

At	Price	Limit

Where:	Price	-	a	numerical	expression,	specifying	the	Limit	Price	
													At	-	a	skip	word	and	can	be	omitted

Example

Buy	within	the	next	bar	on	the	first	tick	with	a	price	of	100	or	less:

Buy	Next	Bar	At	100	Limit;	

Sell	short	within	the	next	bar	on	the	first	tick	with	a	price	of	50	or	more:

SellShort	Next	Bar	50	Limit;

687

Lower
Used	in	strategy	entry	or	exit	statements	to	specify	a	price	range	for	an	entry	or	an
exit.

Must	be	preceded	by	the	word	Or.

Usage

At	Price	Or	Lower

Where:	Price	-	a	numerical	expression,	specifying	the	base	Price	
													At	-	a	skip	word	and	can	be	omitted

Notes

At	Price	Or	Lower	is	an	equivalent	of	a	Limit	when	used	with	Buy	or	BuyToCover
statements,	and	an	equivalent	of	a	Stop	when	used	with	Sell	or	SellShort
statements.

Example

Buy	within	the	next	bar	on	the	first	tick	with	a	price	of	100	or	less:

Buy	Next	Bar	At	100	Or	Lower;	

Sell	short	within	the	next	bar	on	the	first	tick	with	a	price	of	50	or	less:

SellShort	Next	Bar	At	50	Or	Lower;

688

Market
Used	in	strategy	entry	or	exit	statements	to	specify	a	Market	price	for	an	entry	or	an
exit.

A	Market	Buy	order	will	execute	at	the	current	ask	price	and	a	Maret	Sell	order	will
execute	at	the	current	bid	price.

Usage

At	Market

Where:		At		is	a	skip	word	and	can	be	omitted

Example

Buy	a	user-set	number	of	shares	at	Market	price	on	open	of	next	bar:

Buy	Next	Bar	At	Market;

689

Sell
Completely	or	partially	exits	one	or	all	of	the	long	entries	as	specified	by	the
parameters.

The	exit	point	is	visually	indicated	on	a	chart	by	an	Arrow	and	a	Tick.	The	Arrow
identifies	the	time	and	the	Tick	identifies	the	price	value	of	the	exit	point.	Labels,
displaying	the	exit	name	and	the	number	of	contracts	or	shares	traded,	are
displayed	above	the	Sell	Arrow.

An	order	is	executed	at	the	point	specified	by	the	parameters;	if	the	order	is	not
filled	within	the	specified	bar,	the	order	is	cancelled.

Usage	Sell[("ExitLabel")][From	Entry("EntryLabel")][TradeSize[Total]]Exit

Parameters	inside	the	square	brackets	are	optional

Parameters
ExitLabel	-	an	optional	parameter;	assigns	a	name	that	will	be	displayed	in	the
name	label	above	the	exit

If	ExitLabel	is	not	specified,	the	name	"Sell"	will	be	used	for	the	first	exit,
"Sell#2"	for	the	second	exit,	"Sell#3"	for	the	third	exit,	etc.

EntryLabel	-	an	optional	parameter;	ties	the	exit	to	the	particular	entry	that	was
assigned	the	EntryLabel	name;	the	name	must	be	preceded	by	the	word	"Entry",
the	word	"From"	is	a	skip	word	and	can	be	omitted

An	exit	can	only	be	tied	to	an	entry	within	the	same	signal.	For	more	information,
see	Buy

If	EntryLabel	is	not	specified,	all	of	the	open	long	entries	will	be	closed.	

TradeSize	-	an	optional	parameter;	a	numerical	expression,	specifying	the	number
of	contracts	or	shares	to	sell;	the	expression	must	be	followed	by	one	of	the
following	transposable	words:	Share,	Shares,	Contract	or	Contracts.

By	default,	the	number	of	contracts	or	shares	specified	by	the	TradeSize	
parameter	will	be	sold	from	each	one	of	the	open	long	entries.

If	TradeSize		is	followed	by	the	word	"Total",	only	the	number	of	contracts	or

690

shares	specified	by	the	TradeSize		parameter	will	be	sold,	regardless	of	the
number	of	open	long	entries.	The	contracts	or	shares	will	be	sold	in	the	same	order
they	were	bought:	First	In,	First	Out.

If	TradeSize		is	not	specified,	the	entire	long	position	will	be	closed	out.	

Exit	-	a	required	parameter;	specifies	the	timing	and	price	of	exit.	

There	are	four	types	of	Exit:	

This	Bar[On]Close

Where:	-	On		is	a	skip	word	and	can	be	omitted

A	Sell	Arrow	will	be	placed	at	the	current	bar's	Close	tick.	

Next	Bar[At]Open		or		Next	Bar[At]Market

Where:	-	words	"Market"	and	"Open"	are	transposable
													-	At		is	a	skip	word	and	can	be	omitted

A	Sell	Arrow	will	be	placed	at	the	next	bar's	Open	tick.	

Next	Bar[At]Price		Limit

Where:	-	Price		is	a	numerical	expression,	specifying	the	Limit	Price
													-	At		is	a	skip	word	and	can	be	omitted

A	Sell	Arrow	will	be	placed	on	the	next	bar	at	the	first	tick	with	a	price	value
greater	than	or	equal	to	Price	;	if	there	are	no	such	ticks	within	the	next	bar,	the
order	will	be	cancelled.

Next	Bar[At]Price		Stop

Where:	-	Price		is	a	numerical	expression,	specifying	the	Stop	Price
													-	At		is	a	skip	word	and	can	be	omitted

A	Sell	Arrow	will	be	placed	on	the	next	bar	at	the	first	tick	with	a	price	value	equal
to	or	less	than	the	Price	;	if	there	are	no	such	ticks	within	the	next	bar,	the	order
will	be	cancelled.

691

Example

Completely	exit	all	open	long	entries	at	Market	price	on	close	of	this	bar	and	label
the	exit	"Complete	Exit":

Sell("Complete	Exit")This	Bar	On	Close;	

Completely	exit	from	the	long	position	established	by	the	entry	labeled	"Original
Entry",	at	Market	price	on	open	of	next	bar:

Sell	From	Entry("Original	Entry")Next	Bar	At	Open;	

Sell	10	shares	of	the	long	position	established	by	the	entry	labeled	"Original
Entry",	at	Market	price	on	open	of	next	bar:

Sell	Entry("Original	Entry")10	Shares	Next	Bar	At	Market;	

Sell	5	contracts	for	all	open	long	entries	at	Market	price	on	open	of	next	bar:

Sell	5	Contracts	Next	Bar	Market;	

Sell	a	total	of	1	share,	regardless	of	the	number	of	open	long	entries,	within	the
next	bar	on	the	first	tick	with	a	price	of	100	or	more	(the	longest-held	share	will	be
sold	if	the	price	is	met):

Sell	1	Share	Total	Next	Bar	At	100	Limit;	

Completely	exit	all	long	entries	within	the	next	bar	on	the	first	tick	with	a	price	of
50	or	less:

Sell	Next	Bar	50	Stop;

692

SellShort
Enters	a	short	position	as	specified	by	the	parameters.

The	entry	point	is	visually	indicated	on	a	chart	by	an	Arrow	and	a	Tick.	The	Arrow
identifies	the	time	and	the	Tick	identifies	the	price	value	of	the	entry	point.	Labels,
displaying	the	entry	name	and	the	number	of	contracts	or	shares	traded,	are
displayed	above	the	Short	Arrow.

An	order	is	executed	at	the	point	specified	by	the	parameters;	if	the	order	is	not
filled	within	the	specified	bar,	the	order	is	cancelled.

When	a	Sell	Short	order	is	filled,	any	open	long	positions	will	also	be	closed.

Usage

SellShort[("EntryLabel")][TradeSize]Entry

or:

Sell	Short[("EntryLabel")][TradeSize]Entry

Parameters	inside	the	square	brackets	are	optional

Parameters

EntryLabel	-	an	optional	parameter;	assigns	a	name	that	will	be	displayed	in	the
name	label	above	the	entry,	and	can	be	used	to	identify	the	particular	entry	and	to	tie
an	exit	to	it.

An	exit	can	only	be	tied	to	an	entry	within	the	same	signal;	for	more	information,
see	BuyToCover.

If	EntryLabel	is	not	specified,	the	name	"Short"	will	be	used	for	the	first	entry,
"Short#2"	for	the	second	entry,	"Short#3"	for	the	third	entry,	etc.	

TradeSize	-	an	optional	parameter;	a	numerical	expression,	specifying	the	number
of	contracts	or	shares	to	sell	short;	the	expression	must	be	followed	by	one	of	the
following	transposable	words:	Share,	Shares,	Contract	or	Contracts.

693

If	TradeSize	value	equals	0	or	is	negative,	a	short	position	will	not	be	entered	but
any	open	long	positions	will	be	closed.

If	TradeSize	is	not	specified,	the	trade	size	value	set	by	the	user	in	the	Properties
tab	of	the	Strategy	Properties	window	will	be	used.	

Entry	-	a	required	parameter;	specifies	the	timing	and	price	of	entry.

There	are	four	types	of	Entry:

This	Bar[On]Close

Where:	-	On		is	a	skip	word	and	can	be	omitted

A	Short	Arrow	will	be	placed	at	the	current	bar's	Close	tick.	

Next	Bar[At]Open		or		Next	Bar[At]Market

Where:	-	words	"Market"	and	"Open"	are	transposable	
													-	At		is	a	skip	word	and	can	be	omitted

A	Short	Arrow	will	be	placed	at	the	next	bar's	Open	tick.	

Next	Bar[At]Price		Limit

Where:	-	Price		is	a	numerical	expression,	specifying	the	Limit	Price
													-	At		is	a	skip	word	and	can	be	omitted	

A	Short	Arrow	will	be	placed	on	the	next	bar	at	the	first	tick	with	a	price	equal	to	or
greater	than	the	Price	;	if	there	are	no	such	ticks	within	the	next	bar,	the	order	will
be	cancelled.

Next	Bar[At]Price		Stop

Where:	-	Price		is	a	numerical	expression,	specifying	the	Stop	Price	
													-	At		is	a	skip	word	and	can	be	omitted	

A	Short	Arrow	will	be	placed	on	the	next	bar	at	the	first	tick	with	a	price	value	less
than	or	equal	to	Price	;	if	there	are	no	such	ticks	within	the	next	bar,	the	order	will
be	cancelled.

694

Example

SellShort	a	user-set	number	of	shares	at	Market	price	on	close	of	this	bar:

SellShort	This	Bar	On	Close;	

SellShort	1	share	at	Market	price	on	open	of	next	bar	and	label	the	entry	"Entry":

SellShort("Entry")1	Share	Next	Bar	At	Open;	

SellShort	1	contract	at	Market	price	on	open	of	next	bar	and	label	the	entry	"Entry":

SellShort("Entry")1	Contract	Next	Bar	Market;	

SellShort	2	shares	within	the	next	bar	on	the	first	tick	with	a	price	of	100	or	more:

SellShort	2	Shares	Next	Bar	At	100	Limit;	

SellShort	10	contracts	within	the	next	bar	on	the	first	tick	with	a	price	of	50	or	less:

SellShort	10	Contracts	Next	Bar	50	Stop;

695

SetBreakEven
Closes	out	the	entire	position	or	the	entry	if	it	is	at	the	breakeven	point	after	the
profit	has	reached	the	specified	value;	generates	the	appropriate	Stop	order
depending	on	whether	the	position	is	long	or	short.

SetStopPosition	and	SetStopContract	or	SetStopShare	functions	determine
whether	SetBreakEven	will	be	applied	to	the	entire	position	or	to	each	contract	or
share	individually;	by	default,	SetBreakEven	is	applied	to	the	entire	position.

SetBreakEven	function	is	evaluated	intra-bar	and	not	only	on	close	of	a	bar,	and
can	exit	within	the	same	bar	as	the	entry.

Usage

SetBreakEven(Profit)

Where:	Profit	-	a	numerical	expression,	specifying	the	currency	value	of	the
profit	that	must	be	reached	first

Notes

This	function	can	only	be	used	in	signals.

SetBreakEven	function	does	not	factor	in	commissions	or	slippage.

Amount	can	be	set	either	in	the	currency	of	the	symbol	or	in	the	currecy	of	the
strategy,	depending	on	the	key	set	in	Windows	Registry.

Go	to	HKEY_CURRENT_USER\Software\TS	Support\
[ProductName]\StrategyProp	and	create	a	key	DWORD	Value:
SpecOrdersAmountIsStrategyCurr.

0	-	to	calculate	Amount	in	the	currency	of	the	symbol.

1	-	to	calculate	Amount	in	the	currency	of	the	strategy/Portfolio	(by	default).

[ProductName]	is	name	of	product,	for	example,	for	32-bit	MultiCharts	=
"MultiCharts",	for	64-bit	version	=	"MultiCharts64".

696

If	there	is	no	such	a	key,	Amount	is	calculated	in	the	currency	of	the
strategy/Portfolio.

Example

Generate	an	exit	order	for	the	entire	position	if	it	is	at	the	breakeven	point	after
position	profit	has	reached	¤50:

SetStopPosition;

SetBreakEven(50);	

Generate	an	exit	order	for	the	entry	if	it	is	at	the	breakeven	point	after	per	contract
profit	has	reached	¤10:

SetStopContract;

SetBreakEven(10);

697

SetBreakEven_pt
Closes	out	the	entire	position	or	the	entry	if	it	is	at	the	breakeven	point	after	the
profit	has	reached	the	specified	tick	value;	generates	the	appropriate	Stop	order
depending	on	whether	the	position	is	long	or	short.

SetStopPosition	and	SetStopContract	or	SetStopShare	functions	determine
whether	single	SetBreakEven_pt	order	will	be	applied	to	the	entire	position	or
multiple	SetBreakEven_pt	orders	will	be	applied	to	each	entry	in	position
individually;	by	default,	SetBreakEven_pt	is	applied	to	the	entire	position.

SetBreakEven_pt	function	is	evaluated	intra-bar	and	not	only	on	close	of	a	bar,	and
can	exit	within	the	same	bar	as	the	entry.

Usage

SetBreakEven_pt(Profit)

Where:	Profit	-	a	numerical	expression,	specifying	the	amount	of	the	profit	in
ticks	that	must	be	reached	first

Notes

This	function	can	only	be	used	in	signals.

SetBreakEven_pt	function	does	not	factor	in	commissions	or	slippage.

Example

Generate	an	exit	order	for	the	entire	position	if	it	is	at	the	breakeven	point	after
position	profit	has	reached	50	ticks:

SetStopPosition;

SetBreakEven_pt(50);	

Generate	an	exit	order	for	the	entry	if	it	is	at	the	breakeven	point	after	per	entery

698

profit	has	reached	10	ticks:

SetStopContract;

SetBreakEven_pt(10);

699

SetDollarTrailing
Closes	out	the	entire	position	or	the	entry	if	the	current	profit	is	less	than	the
maximum	profit	by	the	specified	amount;	generates	the	appropriate	Stop	order
depending	on	whether	the	position	is	long	or	short.

For	example,	if	the	specified	ammount	is	¤50	and	the	profit	has	reached	the
maximum	of	¤120,	the	position	will	be	closed	once	the	profit	drops	to	¤70.

SetStopPosition	and	SetStopContract	or	SetStopShare	functions	determine
whether	SetDollarTrailing	will	be	applied	to	the	entire	position	or	to	each	contract
or	share	individually;	by	default,	SetDollarTrailing	is	applied	to	the	entire	position.

SetDollarTrailing	function	is	evaluated	intra-bar	and	not	only	on	close	of	a	bar,	and
can	exit	within	the	same	bar	as	the	entry.

Usage

SetDollarTrailing(Amount)

Where:	Amount	-	a	numerical	expression,	specifying	the	currency	value	of	the
maximum	loss	of	profit

Notes

This	function	can	only	be	used	in	signals.

Amount	can	be	set	either	in	the	currency	of	the	symbol	or	in	the	currecy	of	the
strategy,	depending	on	the	key	set	in	Windows	Registry.

Go	to	HKEY_CURRENT_USER\Software\TS	Support\
[ProductName]\StrategyProp	and	create	a	key	DWORD	Value:
SpecOrdersAmountIsStrategyCurr.

0	-	to	calculate	Amount	in	the	currency	of	the	symbol.

1	-	to	calculate	Amount	in	the	currency	of	the	strategy/Portfolio	(by	default).

[ProductName]	is	name	of	product,	for	example,	for	32-bit	MultiCharts	=

700

"MultiCharts",	for	64-bit	version	=	"MultiCharts64".

If	there	is	no	such	a	key,	Amount	is	calculated	in	the	currency	of	the
strategy/Portfolio.

Example

Generate	an	exit	order	for	the	entire	position	if	position	profit	drops	by	¤50:

SetStopPosition;

SetDollarTrailing(50);	

Generate	an	exit	order	for	the	entry	if	per	contract	profit	drops	by	¤10:

SetStopContract;

SetDollarTrailing(10);

701

SetExitOnClose
Closes	out	the	current	position	at	the	Close	tick	of	the	last	bar	of	the	trading	session
on	an	intra-day	chart;	generates	the	appropriate	Market	exit	order	depending	on
whether	the	position	is	long	or	short.

SetExitOnClose	function	uses	the	session	closing	time	specified	in	the	session
settings	for	the	symbol	in	the	QuoteManager.

Usage

SetExitOnClose

Notes

This	function	can	only	be	used	in	signals.

Example

Generate	an	exit	order	at	the	Close	tick	of	the	last	bar	of	the	trading	session:

SetExitOnClose;

702

SetPercentTrailing
Closes	out	the	entire	position	or	the	entry	if	the	specified	percentage	of	the
maximum	profit	is	lost	after	the	profit	has	reached	the	specified	value;	generates
the	appropriate	Stop	order	depending	on	whether	the	position	is	long	or	short.

For	example,	if	the	specified	profit	is	¤100	and	the	specified	percentage	is	50,	and
the	profit	has	reached	the	maximum	of	¤120,	the	position	will	be	closed	once	the
profit	falls	back	to	¤60.

SetStopPosition	and	SetStopContract	or	SetStopShare	functions	determine
whether	SetPercentTrailing	will	be	applied	to	the	entire	position	or	each	contract	or
share	individually;	by	default,	SetPercentTrailing	is	applied	to	the	entire	position.

SetPercentTrailing	function	is	evaluated	intra-bar	and	not	only	on	close	of	a	bar,
and	can	exit	within	the	same	bar	as	the	entry.

Usage

SetPercentTrailing(Profit,Percentage)

Where:	Profit	-	a	numerical	expression,	specifying	the	currency	value	of	the
profit	that	must	be	reached	first	
													Percentage	-	a	numerical	expression,	specifying	the	maximum	loss	of
profit	in	percent

Notes

This	function	can	only	be	used	in	signals.

Amount	can	be	set	either	in	the	currency	of	the	symbol	or	in	the	currecy	of	the
strategy,	depending	on	the	key	set	in	Windows	Registry.

Go	to	HKEY_CURRENT_USER\Software\TS	Support\
[ProductName]\StrategyProp	and	create	a	key	DWORD	Value:
SpecOrdersAmountIsStrategyCurr.

0	-	to	calculate	Amount	in	the	currency	of	the	symbol.

703

1	-	to	calculate	Amount	in	the	currency	of	the	strategy/Portfolio	(by	default).

[ProductName]	is	name	of	product,	for	example,	for	32-bit	MultiCharts	=
"MultiCharts",	for	64-bit	version	=	"MultiCharts64".

If	there	is	no	such	a	key,	Amount	is	calculated	in	the	currency	of	the
strategy/Portfolio.

Example

Generate	an	exit	order	for	the	entire	position	if	50	percent	of	maximum	position
profit	is	lost	after	the	profit	has	reached	¤25:

SetStopPosition;

SetPercentTrailing(25,50);	

Generate	an	exit	order	for	the	entry	if	25	percent	of	maximum	per	share	profit	is
lost	after	the	profit	has	reached	¤5:

SetStopShare;

SetPercentTrailing(5,25);

704

SetPercentTrailing_pt
Closes	out	the	entire	position	or	the	entry	if	the	specified	percentage	of	the
maximum	profit	is	lost	after	the	profit	has	reached	the	specified	tick	value;
generates	the	appropriate	Stop	order	depending	on	whether	the	position	is	long	or
short.

For	example,	if	the	specified	profit	is	100	ticks	and	the	specified	percentage	is	50,
and	the	profit	has	reached	the	maximum	of	120	ticks,	the	position	will	be	closed
once	the	profit	falls	back	to	60	ticks.

SetStopPosition	and	SetStopContract	or	SetStopShare	functions	determine
whether	single	SetPercentTrailing_pt	order	will	be	applied	to	the	entire	position	or
multiple	SetPercentTrailing_pt	orders	will	be	applied	to	each	entry	in	position
individually;	by	default,	SetPercentTrailing_pt	is	applied	to	the	entire	position.

SetPercentTrailing_pt	function	is	evaluated	intra-bar	and	not	only	on	close	of	a	bar,
and	can	exit	within	the	same	bar	as	the	entry.

Usage

SetPercentTrailing_pt(Profit,Percentage)

Where:	Profit	-	a	numerical	expression,	specifying	the	tick	value	of	the	profit	that
must	be	reached	first	
													Percentage	-	a	numerical	expression,	specifying	the	maximum	loss	of
profit	in	percent

Notes

This	function	can	only	be	used	in	signals.

SetPercentTrailing_pt	function	does	not	factor	in	commissions	or	slippage.

Example

Generate	an	exit	order	for	the	entire	position	if	50	percent	of	maximum	position

705

profit	is	lost	after	the	profit	has	reached	25	ticks:

SetStopPosition;

SetPercentTrailing_pt(25,50);	

Generate	an	exit	order	for	the	entry	if	25	percent	of	maximum	per	entry	profit	is
lost	after	the	profit	has	reached	5	ticks:

SetStopShare;

SetPercentTrailing_pt(5,25);

706

SetProfitTarget
Closes	out	the	entire	position	or	the	entry	if	profit	reaches	the	specified	currency
value;	generates	the	appropriate	Limit	exit	order	depending	on	whether	the	position
is	long	or	short.

SetStopPosition	and	SetStopContract	or	SetStopShare	functions	determine
whether	the	profit	target	will	be	applied	to	the	entire	position	or	to	each	contract	or
share	individualy;	by	default,	profit	target	is	applied	to	the	entire	position.

SetProfitTarget	function	is	evaluated	intra-bar	and	not	only	on	close	of	a	bar,	and
can	exit	within	the	same	bar	as	the	entry.

Usage

SetProfitTarget(Amount)

Where:	Amount	-	a	numerical	expression,	specifying	the	profit	target	amount

Notes

This	function	can	only	be	used	in	signals.

Amount	can	be	set	either	in	the	currency	of	the	symbol	or	in	the	currecy	of	the
strategy,	depending	on	the	key	set	in	Windows	Registry.

Go	to	HKEY_CURRENT_USER\Software\TS	Support\
[ProductName]\StrategyProp	and	create	a	key	DWORD	Value:
SpecOrdersAmountIsStrategyCurr.

0	-	to	calculate	Amount	in	the	currency	of	the	symbol.

1	-	to	calculate	Amount	in	the	currency	of	the	strategy/Portfolio	(by	default).

[ProductName]	is	name	of	product,	for	example,	for	32-bit	MultiCharts	=
"MultiCharts",	for	64-bit	version	=	"MultiCharts64".

If	there	is	no	such	a	key,	Amount	is	calculated	in	the	currency	of	the
strategy/Portfolio.

707

Example

Generate	an	exit	order	for	the	entire	position	if	the	position	profit	reaches	¤100:

SetStopPosition;

SetProfitTarget(100);	

Generate	an	exit	order	for	the	entry	if	the	profit	per	contract	reaches	¤10:

SetStopContract;

SetProfitTarget(10);

708

SetProfitTarget_pt
Closes	out	the	entire	position	or	the	entry	if	profit	reaches	the	specified	tick	value;
generates	the	appropriate	Limit	exit	order	depending	on	whether	the	position	is
long	or	short.

SetStopPosition	and	SetStopContract	or	SetStopShare	functions	determine
whether	single	profit	target	order	will	be	applied	to	the	entire	position	or	multiple
SetProfitTarget_pt	orders	will	be	applied	to	each	entry	in	position	individualy;	by
default,	profit	target	is	applied	to	the	entire	position.

SetProfitTarget_pt	function	is	evaluated	intra-bar	and	not	only	on	close	of	a	bar,
and	can	exit	within	the	same	bar	as	the	entry.

Usage

SetProfitTarget_pt(Amount)

Where:	Amount	-	a	numerical	expression,	specifying	the	profit	target	amount	in
ticks.

Notes

This	function	can	only	be	used	in	signals.

SetProfitTarget_pt	function	does	not	factor	in	commissions	or	slippage.

Example

Generate	an	exit	order	for	the	entire	position	if	the	position	profit	reaches	100
ticks:

SetStopPosition;

SetProfitTarget_pt(100);	

Generate	an	exit	order	for	the	entry	if	the	profit	per	entry	reaches	10	ticks:

709

SetStopContract;

SetProfitTarget_pt(10);

710

SetStopContract
Forces	the	built-in	strategy	exit	functions	to	be	applied	on	per	contract	or	share
basis.

The	built-in	strategy	exit	functions	are:	SetStopLoss	,	SetProfitTarget	,
SetBreakEven	,	SetDollarTrailing	,	and	SetPercentTrailing.

Usage

SetStopContract

Notes

If	SetStopPositon,	SetStopContract,	and	SetStopShare	were	not	used,	the	exit
functions	will	be	applied	on	the	entire	position	basis	as	a	default.

If	SetStopPositon,	SetStopContract,	and	SetStopShare	were	used	in	multiple
instances	or	in	different	signals	applied	to	the	same	chart,	the	last	instance	will	be
controlling.

Example

Force	the	SetStopLoss	strategy	exit	function	to	be	applied	on	per	contract	basis:

SetStopContract;

SetStopLoss(10);

An	exit	order	for	the	entry	will	be	generated	if	the	loss	per	contract	reaches	¤10.

711

SetStopLoss
Closes	out	the	entire	position	or	the	entry	if	the	loss	reaches	the	specified	currency
value;	generates	the	appropriate	Stop	order	depending	on	whether	the	position	is
long	or	short.

SetStopPosition	and	SetStopContract	or	SetStopShare	functions	determine
whether	the	stop	loss	will	be	applied	to	the	entire	position	or	to	each	contract	or
share	individually;	by	default,	stop	loss	is	applied	to	the	entire	position.

SetStopLoss	function	is	evaluated	intra-bar	and	not	only	on	close	of	a	bar,	and	can
exit	within	the	same	bar	as	the	entry.

Usage

SetStopLoss(Amount)

Where:	Amount	-	a	numerical	expression,	specifying	the	stop	loss	amount

Notes

This	function	can	only	be	used	in	signals.

Amount	can	be	set	either	in	the	currency	of	the	symbol	or	in	the	currecy	of	the
strategy,	depending	on	the	key	set	in	Windows	Registry.

Go	to	HKEY_CURRENT_USER\Software\TS	Support\
[ProductName]\StrategyProp	and	create	a	key	DWORD	Value:
SpecOrdersAmountIsStrategyCurr.

0	-	to	calculate	Amount	in	the	currency	of	the	symbol.

1	-	to	calculate	Amount	in	the	currency	of	the	strategy/Portfolio	(by	default).

[ProductName]	is	name	of	product,	for	example,	for	32-bit	MultiCharts	=
"MultiCharts",	for	64-bit	version	=	"MultiCharts64".

If	there	is	no	such	a	key,	Amount	is	calculated	in	the	currency	of	the
strategy/Portfolio.

712

Example

Generate	an	exit	order	for	the	entire	position	if	the	position	loss	reaches	¤100:

SetStopPosition;

SetStopLoss(100);	

Generate	an	exit	order	for	the	entry	if	the	loss	per	contract	reaches	¤10:

SetStopContract;

SetStopLoss(10);

713

SetStopLoss_pt
Closes	out	the	entire	position	or	the	entry	if	the	loss	reaches	the	specified	tick
value;	generates	the	appropriate	Stop	order	depending	on	whether	the	position	is
long	or	short.

SetStopPosition	and	SetStopContract	or	SetStopShare	functions	determine
whether	single	stop	loss	will	be	applied	to	the	entire	position	or	multiple
SetStopLoss_pt	orders	will	be	applied	to	each	entry	in	position	individually;	by
default,	stop	loss	is	applied	to	the	entire	position.

SetStopLoss_pt	function	is	evaluated	intra-bar	and	not	only	on	close	of	a	bar,	and
can	exit	within	the	same	bar	as	the	entry.

Usage

SetStopLoss_pt(Amount)

Where:	Amount	-	a	numerical	expression,	specifying	the	stop	loss	amount	in	ticks.

Notes

This	function	can	only	be	used	in	signals.

SetStopLoss_pt	function	does	not	factor	in	commissions	or	slippage.

Example

Generate	an	exit	order	for	the	entire	position	if	the	position	loss	reaches	100	ticks:

SetStopPosition;

SetStopLoss_pt(100);	

Generate	an	exit	order	for	the	entry	if	the	loss	per	entry	reaches	10	ticks:

SetStopContract;

714

SetStopLoss_pt(10);

715

SetStopPosition
Forces	the	built-in	strategy	exit	functions	to	be	applied	on	the	entire	position	basis.

The	built-in	strategy	exit	functions	are:	SetStopLoss	,	SetProfitTarget	,
SetBreakEven	,	SetDollarTrailing	,	and	SetPercentTrailing.

Usage

SetStopPosition

Notes

If	SetStopPositon,	SetStopContract,	and	SetStopShare	were	not	used,	the	exit
functions	will	be	applied	on	the	entire	position	basis	as	a	default.

If	SetStopPositon,	SetStopContract,	and	SetStopShare	were	used	in	multiple
instances	or	in	different	signals	applied	to	the	same	chart,	the	last	instance	will	be
controlling.

Example

Force	SetStopLoss	strategy	exit	function	to	be	applied	on	the	entire	position	basis:

SetStopPosition;

SetStopLoss(100);

An	exit	order	for	the	entire	position	will	be	generated	if	the	position	loss	reaches
¤100.

716

SetStopShare
Same	as	SetStopContract

717

SetTrailingStop_pt
Closes	out	the	entire	position	or	the	entry	if	the	current	profit	is	less	than	the
maximum	profit	by	the	specified	amount;	generates	the	appropriate	Stop	order
depending	on	whether	the	position	is	long	or	short.

For	example,	if	the	specified	ammount	is	50	ticks	and	the	profit	has	reached	the
maximum	of	120	ticks,	the	position	will	be	closed	once	the	profit	drops	to	70	ticks.

SetStopPosition	and	SetStopContract	or	SetStopShare	functions	determine
whether	SetTrailingStop_pt	will	be	applied	to	the	entire	position	or	to	each	entry	in
position	individually;	by	default,	SetTrailingStop_pt	is	applied	to	the	entire
position.

SetTrailingStop_pt	function	is	evaluated	intra-bar	and	not	only	on	close	of	a	bar,
and	can	exit	within	the	same	bar	as	the	entry.

Usage

SetDollarTrailing_pt(Amount)

Where:	Amount	-	a	numerical	expression,	specifying	the	tick	value	of	the	maximum
loss	of	profit	in	ticks.

Notes

This	function	can	only	be	used	in	signals.

SetTrailingStop_pt	function	does	not	factor	in	commissions	or	slippage.

Example

Generate	an	exit	order	for	the	entire	position	if	position	profit	drops	by	50	ticks:

SetStopPosition;

SetDollarTrailing_pt(50);	

718

Generate	an	exit	order	for	the	entry	if	per	entry	profit	drops	by	10	ticks:

SetStopContract;

SetDollarTrailing_pt(10);

719

Share
Same	as	Shares

720

Shares

Used	in	strategy	entry	or	exit	statements	in	combination	with	a	numerical
expression	to	specify	the	number	of	shares	or	contracts	to	trade.

Usage

TradeSize	Shares

Where:	TradeSize	-	a	numerical	expression,	specifying	the	number	of	shares	or
contracts

Example

Buy	2	shares	at	Market	price	on	open	of	next	bar:

Buy	2	Shares	Next	Bar	At	Market;

721

Short

Used	in	combination	with	the	word	Sell;	same	as	SellShort.

Usage

Sell	Short[("EntryLabel")][TradeSize]Entry;

722

Stop
Used	in	strategy	entry	or	exit	statements	to	specify	a	Stop	price	for	an	entry	or	an
exit.

A	Stop	order	will	execute	at	the	specified	price	or	worse.	A	worse	price	is	a	higher
price	for	Buy	and	Buy	to	cover	orders,	and	a	lower	price	for	Sell	and	Sell	short
orders.

Usage

At	Price	Stop

Where:	Price	-	a	numerical	expression,	specifying	the	Limit	Price	
													At	-	a	skip	word	and	can	be	omitted

Example

Sell	within	the	next	bar	on	the	first	tick	with	a	price	of	100	or	less:

Sell	Next	Bar	100	Stop;	

Cover	within	the	next	bar	on	the	first	tick	with	a	price	of	50	or	more:

BuyToCover	Next	Bar	At	50	Stop;

723

Total
Used	in	strategy	exit	statements,	following	a	numerical	expression	and	the	words
Shares	or	Contracts,	to	indicate	that	only	the	number	of	contracts	or	shares
specified	by	the	numerical	expression	is	to	be	sold	or	covered	in	total,	regardless
of	the	number	of	open	entries.	The	contracts	or	shares	will	be	sold	or	covered	in
the	same	order	they	were	bought	or	shorted:	First	In,	First	Out.

If	the	word	Total	is	not	used,	the	number	of	contracts	or	shares	specified	by	the
numerical	expression	will	be	sold	or	covered	for	each	one	of	the	open	entries.

Usage

TradeSize	Shares	Total

Where:	TradeSize	-	a	numerical	expression,	specifying	the	number	of	shares	or
contracts

Example

Sell	a	total	of	2	contracts,	regardless	of	the	number	of	open	long	entries,	at	Market
price	on	open	of	next	bar:

Sell	2	Contracts	Total	Next	Bar	At	Market;

724

AvgBarsEvenTrade
Returns	a	numerical	value,	indicating	the	average	number	of	bars	a	position	was
held	during	all	completed	even	trades.

Usage

AvgBarsEvenTrade

Notes

This	function	can	only	be	used	in	signals.

Example

AvgBarsEvenTrade	will	return	a	value	of	3.5	if	four	even	trades	held	positions	for
2,	5,	3,	and	4	bars

725

AvgBarsLosTrade
Returns	a	numerical	value,	indicating	the	average	number	of	bars	a	position	was
held	during	all	completed	losing	trades.

Usage

AvgBarsLosTrade

Notes

This	function	can	only	be	used	in	signals.

Example

AvgBarsLosTrade	will	return	a	value	of	3.5	if	four	losing	trades	held	positions	for
2,	5,	3,	and	4	bars

726

AvgBarsWinTrade
Returns	a	numerical	value,	indicating	the	average	number	of	bars	a	position	was
held	during	all	completed	winning	trades.

Usage

AvgBarsWinTrade

Notes

This	function	can	only	be	used	in	signals.

Example

AvgBarsWinTrade	will	return	a	value	of	3.5	if	four	winning	trades	held	positions
for	2,	5,	3,	and	4	bars

727

AvgEntryPrice
Returns	a	numerical	value,	indicating	the	average	entry	price	for	all	open	entries	in
a	pyramided	position.

Usage

AvgEntryPrice

Notes

This	function	can	only	be	used	in	signals.

Example

AvgEntryPrice	will	return	a	value	of	101	if	there	were	three	open	entries	at	95,
105,	and	103

728

AvgEntryPrice_at_Broker

Returns	a	numerical	value,	indicating	the	average	entry	price	at	the	broker	for	the
symbol.

A	positive	value	indicates	a	long	position	and	a	negative	value	indicates	a	short
position.

A	zero	('0')	is	returned	when	the	current	position	is	flat,	or	if	Automated	Trading	is
not	turned	on.

Usage

AvgEntryPrice_at_Broker

Notes

This	function	can	only	be	used	in	signals	and	functions.

Important

If	Automated	Trading	was	manually	turned	off	by	the	user,	the	value	returned	by	the
keyword	stops	changing,	and	may	remain	unequal	to	'0'.

Example

AvgEntryPrice_at_Broker	will	return	a	value	of	102	if	broker	has	returned	the
value	of	102	for	the	current	trading	instrument.

729

AvgEntryPrice_at_Broker_for_The_Strategy
Returns	a	numerical	value,	indicating	the	average	entry	price	at	the	broker	for	the
strategy.

A	positive	value	indicates	a	long	position	and	a	negative	value	indicates	a	short
position.

A	zero	('0')	is	returned	when	the	current	position	is	flat,	or	if	Automated	Trading	is
not	turned	on.

Usage

AvgEntryPrice_at_Broker_for_The_Strategy

Notes

This	function	can	only	be	used	in	signals	and	functions.

Important

If	Automated	Trading	was	manually	turned	off	by	the	user,	the	value	returned	by	the
keyword	stops	changing,	and	may	remain	unequal	to	'0'.

Example

AvgEntryPrice_at_Broker_for_The_Strategy	will	return	a	value	of	100	if	there
were	two	1	contract	entries	for	the	current	strategy:	at	98	and	102.

730

GrossLoss
Returns	a	negative	numerical	value,	indicating	the	total	currency	value	of	all
completed	losing	trades.

Usage

GrossLoss

Notes

This	function	can	only	be	used	in	signals.

Example

GrossLoss	will	return	a	value	of	-50	if	there	were	a	total	of	four	losing	trades,	at
10,	5,	20,	and	15

GrossLoss	will	return	a	value	of	0	if	no	losing	trades	were	completed	during	the
entire	trading	period

731

GrossProfit
Returns	a	numerical	value,	indicating	the	total	currency	value	of	all	completed
winning	trades.

Usage

GrossProfit

Note

This	function	can	only	be	used	in	signals.

Example

GrossProfit	will	return	a	value	of	50	if	there	were	a	total	of	four	winning	trades,
at	10,	5,	20,	and	15

GrossProfit	will	return	a	value	of	0	if	no	winning	trades	were	completed	during
the	entire	trading	period

732

i_AvgEntryPrice
Same	as	AvgEntryPrice	except	used	in	indicators.

733

i_AvgEntryPrice_at_Broker
Returns	the	Average	entry	price	of	each	open	entry	in	a	pyramided	position.

Usage

i_AvgEntryPrice_at_Broker

Notes

i_AvgEntryPrice_at_Broker	only	returns	the	average	entry	price	for	open	trades.

i_AvgEntryPrice_at_Broker	can	only	be	used	in	an	indicator.

i_AvgEntryPrice_at_Broker	will	only	return	a	value	if	a	signal	is	applied	to	the
same	data.

Example

i_AvgEntryPrice_at_Broker	returns	170	if	three	trades	are	currently	open	and
were	entered	at	a	price	of	140,	170,	and	200.

i_AvgEntryPrice_at_Broker	returns	53	if	four	trades	are	currently	open	and	were
entered	at	a	price	of	54,	48,	60,	and	50.

734

i_AvgEntryPrice_at_Broker_for_The_Strategy
Is	used	for	the	extraction	of	strategy	information	in	indicator.

Returns	the	same	information	as	AvgEntryPrice_at_Broker_for_The_Strategy.

735

i_ClosedEquity
Returns	the	profit	or	loss	realized	when	a	position	has	been	closed.

Usage

i_ClosedEquity

Notes

This	function	can	only	be	used	in	indicators.

Example

i_ClosedEquity	will	return	100	if	the	closed	equity	is	100.

736

i_CurrentContracts
Same	as	CurrentContracts	except	used	in	indicators.

737

i_CurrentShares
Same	as	CurrentShares	except	used	in	indicators.

738

i_MarketPosition
Returns	a	numerical	value,	indicating	the	type	of	the	specified	position.

A	value	of	1	indicates	the	current	bar	has	a	long	position,	-1	indicates	the	current
bar	has	a	short	position,	and	0	is	returned	only	if	the	current	bar	has	a	flat	position.

Usage

i_MarketPosition

Notes

This	function	can	only	be	used	in	indicators.

Example

i_MarketPosition	will	return	a	value	of	0	if	the	position	on	the	current	bar	is	flat

i_MarketPosition	will	return	a	value	of	1	if	the	position	on	the	current	bar	is	long

i_MarketPosition	will	return	a	value	of	-1	if	the	position	on	the	current	bar	is
short

739

i_OpenEquity
Returns	the	current	equity	(netprofit	+	openpositionprofit)

Usage

i_OpenEquity

Notes

This	function	can	only	be	used	in	indicators.

Example

i_OpenEquity	will	return	100	if	the	current	equity	is	100.

i_OpenEquity	will	return	-100	if	the	current	equity	is	-100.

740

LargestLosTrade
Returns	a	negative	numerical	value,	indicating	the	currency	value	of	the	largest
completed	losing	trade.

Usage

LargestLosTrade

Notes

This	function	can	only	be	used	in	signals.

Example

LargestLosTrade	will	return	a	value	of	-20	if	there	were	a	total	of	four	losing
trades	at	10,	5,	20,	and	15

LargestLosTrade	will	return	a	value	of	0	if	no	losing	trades	were	completed
during	the	entire	trading	period

741

LargestWinTrade
Returns	a	numerical	value,	indicating	the	currency	value	of	the	largest	completed
winning	trade.

Usage

LargestWinTrade

Notes

This	function	can	only	be	used	in	signals.

Example

LargestWinTrade	will	return	a	value	of	20	if	there	were	a	total	of	four	winning
trades	at	10,	5,	20,	and	15

LargestWinTrade	will	return	a	value	of	0	if	no	winning	trades	were	completed
during	the	entire	trading	period

742

MaxConsecLosers
Returns	a	numerical	value,	indicating	the	number	of	trades	in	the	longest	sequence
of	consecutive	completed	losing	trades.

Usage

MaxConsecLosers

Notes

This	function	can	only	be	used	in	signals.

Example

MaxConsecLosers		will	return	a	value	of	3	if	there	were	three	consecutive
completed	losing	trades

MaxConsecLosers		will	return	a	value	of	0	if	no	losing	trades	were	completed
during	the	entire	trading	period

743

MaxConsecWinners
Returns	a	numerical	value,	indicating	the	number	of	trades	in	the	longest	sequence
of	consecutive	completed	winning	trades.

Usage

MaxConsecWinners

Notes

This	function	can	only	be	used	in	signals.

Example

MaxConsecWinners	will	return	a	value	of	3	if	there	were	three	consecutive
completed	winning	trades

MaxConsecWinners	will	return	a	value	of	0	if	no	winning	trades	were	completed
during	the	entire	trading	period

744

MaxContractsHeld
Returns	a	numerical	value,	indicating	the	maximum	number	of	contracts	or	shares
held	at	any	one	time.

Usage

MaxContractsHeld

Notes

This	function	can	only	be	used	in	signals.

Example

MaxContractsHeld	will	return	a	value	of	10	if	a	maximum	of	ten	contracts	were
held	at	any	one	time

745

MaxIDDrawDown
Returns	a	negative	numerical	value,	indicating	the	largest	decline	in	equity	during
the	entire	trading	period.

Usage

MaxIDDrawDown

Notes

This	function	can	only	be	used	in	signals.

Example

MaxIDDrawDown	will	return	a	value	of	-500	if	the	largest	decline	in	equity	during
the	entire	trading	period	was	¤500

746

MaxSharesHeld
Same	as	MaxContractsHeld

747

NetProfit
Returns	a	numerical	value,	indicating	the	total	currency	value	of	all	completed
trades.

Usage

NetProfit

Notes

This	function	can	only	be	used	in	signals.

Example

NetProfit	will	return	a	value	of	20	if	there	were	winning	trades	at	25	and	10,	and
losing	trades	at	5	and	10

NetProfit	will	return	a	value	of	-15	if	there	were	winning	trades	at	10	and	5,	and
losing	trades	at	20	and	10

NetProfit	will	return	a	value	of	0	no	trades	were	completed	during	the	entire
trading	period

748

NumEvenTrades
Returns	a	numerical	value,	indicating	the	total	number	of	all	completed	even	trades.

Usage

NumEvenTrades

Notes

This	function	can	only	be	used	in	signals.

Example

NumEvenTrades	will	return	a	value	of	10	if	there	were	ten	completed	even	trades

NumEvenTrades	will	return	a	value	of	0	if	no	even	trades	were	completed	during
the	entire	trading	period

749

NumLosTrades
Returns	a	numerical	value,	indicating	the	number	of	all	completed	losing	trades.

Usage

NumLosTrades

Notes

This	function	can	only	be	used	in	signals.

Example

NumLosTrades	will	return	a	value	of	5	if	there	were	a	total	of	five	completed	losing
trades

NumLosTrades	will	return	a	value	of	0	if	no	losing	trades	were	completed	during
the	entire	trading	period

750

NumWinTrades
Returns	a	numerical	value,	indicating	the	number	of	all	completed	winning	trades.

Usage

NumWinTrades

Notes

This	function	can	only	be	used	in	signals.

Example

NumWinTrades	will	return	a	value	of	5	if	there	were	a	total	of	five	completed
winning	trades

NumWinTrades	will	return	a	value	of	0	if	no	winning	trades	were	completed	during
the	entire	trading	period

751

PercentProfit
Returns	a	numerical	value,	indicating	the	percentage	of	winning	trades	in	all	trades
completed.

Usage

PercentProfit

Notes

This	function	can	only	be	used	in	signals.

Example

PercentProfit	will	return	a	value	of	70	if	seven	out	of	the	total	of	10	completed
trades	were	winning	trades

752

SetCustomFitnessValue

Sets	a	value	of	the	custom	criterion	that	is	to	be	used	for	optimization.

Usage

SetCustomFitnessValue(Criterion)

Where:	Criterion	-	an	expression	specifying	a	custom	criterion	value.

Note

This	function	can	be	used	only	in	signals
To	use	the	custom	fitness	value:
1.	 Open	genetic	algorithm	properties	window;
2.	 Set	the	number	of	simulations	by	changing	the	inputs	range;
3.	 Select	the	Algorithm-Specified	Properties	tab;
4.	 Select	the	Custom	Fitness	Value	from	the	list	under	the	Standard

Criteria	section.

Example

Set	the	gross	profit	to	be	a	custom	criterion	for	genetic	optimization

SetCustomFitnessValue	(GrossProfit);

Set	the	formula	to	be	a	custom	criterion	for	genetic	optimization

SetCustomFitnessValue	(TotalTrades	/	(GrossLoss	+	GrossProfit));

753

TotalBarsEvenTrades
Returns	a	numerical	value,	indicating	the	total	number	of	bars	a	position	was	held
during	all	completed	even	trades.

Usage

TotalBarsEvenTrades

Notes

This	function	can	only	be	used	in	signals.

Example

TotalBarsEvenTrades	will	return	a	value	of	14	if	four	even	trades	held	positions
for	2,	5,	3,	and	4	bars

TotalBarsEvenTrades	will	return	a	value	of	0	if	no	even	trades	were	completed
during	the	entire	trading	period

754

TotalBarsLosTrades
Returns	a	numerical	value,	indicating	the	total	number	of	bars	a	position	was	held
during	all	completed	losing	trades.

Usage

TotalBarsLosTrades

Notes

This	function	can	only	be	used	in	signals.

Example

TotalBarsLosTrades	will	return	a	value	of	14	if	four	losing	trades	held	positions
for	2,	5,	3,	and	4	bars

TotalBarsLosTrades	will	return	a	value	of	0	if	no	losing	trades	were	completed
during	the	entire	trading	period

755

TotalBarsWinTrades
Returns	a	numerical	value,	indicating	the	total	number	of	bars	a	position	was	held
during	all	completed	winning	trades.

Usage

TotalBarsWinTrades

Notes

This	function	can	only	be	used	in	signals.

Example

TotalBarsWinTrades	will	return	a	value	of	14	if	four	winning	trades	held
positions	for	2,	5,	3,	and	4	bars

TotalBarsWinTrades	will	return	a	value	of	0	if	no	winning	trades	were	completed
during	the	entire	trading	period

756

TotalTrades
Returns	a	numerical	value,	indicating	the	total	number	of	all	completed	trades.

Usage

TotalTrades

Notes

This	function	can	only	be	used	in	signals.

Example

TotalTrades	will	return	a	value	of	5	if	there	were	a	total	of	five	completed	trades

TotalTrades	will	return	a	value	of	0	if	no	trades	were	completed	during	the	entire
trading	period

757

BarsSinceEntry

Returns	a	numerical	value,	indicating	the	number	of	bars	since	the	initial	entry	into
the	specified	position.

Usage

BarsSinceEntry(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.	

If	PosBack		is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	number	of	bars	since	the	current	position	has	been
entered,	to	Value1	variable:

Value1=BarsSinceEntry;	

Assign	a	value,	indicating	the	number	of	bars	since	the	most	recently	closed
position	has	been	entered,	to	Value1	variable:

Value1=BarsSinceEntry(1);

758

BarsSinceEntry_Checked

Returns	a	numerical	value,	indicating	the	number	of	bars	since	the	initial	entry	into
the	specified	position.

Usage

BarsSinceEntry_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	BarsSinceEntry_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	number	of	bars	since	the	current	position	has	been
entered,	to	Value1	variable:

Value1	=	BarsSinceEntry_Checked;

Assign	a	value,	indicating	the	number	of	bars	since	the	most	recently	closed
position	has	been	entered,	to	Value1	variable:

Value1	=	BarsSinceEntry_Checked	(1);

759

BarsSinceExit

Returns	a	numerical	value,	indicating	the	number	of	bars	since	a	complete	exit
from	the	specified	position.

Usage

BarsSinceExit(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														1	-	the	last	position	closed	(one	position	back);	
														2	-	two	positions	back,	etc.

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	number	of	bars	since	the	last	position	has	been
closed,	to	Value1	variable:

Value1=BarsSinceExit(1);

760

BarsSinceExit_Checked

Returns	a	numerical	value,	indicating	the	number	of	bars	since	a	complete	exit
from	the	specified	position.

Usage

BarsSinceExit_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	BarsSinceExit_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	number	of	bars	since	the	last	position	has	been
closed,	to	Value1	variable:

Value1	=	BarsSinceExit_Checked	(1);

761

ContractProfit

Returns	a	numerical	value,	indicating	the	current	profit	or	loss	per	each	contract	or
share	of	a	multi-share	or	multi-contract	position.

Usage

ContractProfit

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	current	profit	or	loss	per	contract	or	share,	to	Value1
variable:

Value1=ContractProfit;

762

CurrentContracts

Returns	an	absolute	numerical	value,	indicating	the	number	of	contracts	or	shares
held	in	the	current	position.

Usage

CurrentContracts

Notes

This	function	can	only	be	used	in	signals.

Example

CurrentContracts		will	return	a	value	of	1	for	1	contract	long

CurrentContracts		will	return	a	value	of	5	for	5	shares	short

763

CurrentEntries

Returns	a	numerical	value,	indicating	the	number	of	open	entries	for	the	current
position.

Usage

CurrentEntries

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	number	of	open	entries	in	the	current	position,	to
Value1	variable:

Value1=CurrentEntries;

764

CurrentShares
Same	as	CurrentContracts

765

EntryDate

Returns	a	numerical	value,	indicating	the	date	of	initial	entry	into	the	specified
position.	The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number
of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

EntryDate(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	date	that	the	current	position	has	been	entered,	to
Value1	variable:

Value1=EntryDate;

Value	1	will	equal	to	1081030	for	the	entry	date	of	October	30th,	2008

Assign	a	value,	indicating	the	date	that	the	most	recently	closed	position	has	been
entered,	to	Value1	variable:

Value1=EntryDate(1);

766

Value	1	will	equal	to	990402	for	the	entry	date	of	April	2nd,	1999

767

EntryDateTime

Returns	a	double-precision	decimal	DateTime	value	indicating	the	date	and	time	of
the	bar	where	the	order	that	opened	a	specified	position	was	generated.	The	integer
portion	of	the	DateTime	value	indicates	the	number	of	days	that	have	elapsed	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	indicates	the
fraction	of	the	day	that	has	passed	since	midnight.	DateTime	is	a	floating	point
value	with	high	precision.	It	allows	accessing	millisecond	time	stamps	of	the	bar.

Usage

EntryDateTime(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	date	that	the	current	position	has	been	entered,	to
Value1	variable:

Value1	=	EntryDateTime;

768

EntryDateTime_Checked

Returns	a	double-precision	decimal	DateTime	value	indicating	the	date	and	time	of
the	bar	where	the	order	that	opened	a	specified	position	was	generated.	The	integer
portion	of	the	DateTime	value	indicates	the	number	of	days	that	have	elapsed	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	indicates	the
fraction	of	the	day	that	has	passed	since	midnight.	DateTime	is	a	floating	point
value	with	high	precision.	It	allows	accessing	millisecond	time	stamps	of	the	bar.

Usage

EntryDateTime_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

If	PosBack	value	is	greater	that	the	real	number	of	previously	opened	positions,
EntryDateTime_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	date	that	the	current	position	has	been	entered,	to
Value1	variable:

Value1	=	EntryDateTime_Checked;

769

EntryDate_Checked

Returns	a	numerical	value,	indicating	the	date	of	initial	entry	into	the	specified
position.

The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

EntryDate_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	EntryDate_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	date	that	the	current	position	has	been	entered,	to
Value1	variable:

Value1	=	EntryDate_Checked;

Value	1	will	equal	to	1081030	for	the	entry	date	of	October	30th,	2008	

Assign	a	value,	indicating	the	date	that	the	most	recently	closed	position	has	been

770

entered,	to	Value1	variable:

Value1	=	EntryDate_Checked	(1);

Value	1	will	equal	to	990402	for	the	entry	date	of	April	2nd,	1999

771

EntryName

Returns	the	name	of	the	order	which	opened	the	position.

Usage

EntryName(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

Notes

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Example

EntryName(1)	will	return	a	value	of	"buy	LE"	for	the	last	closed	position,	if	this
position	was	opened	by	the	order	with	"buy	LE"	name.

772

EntryPrice

Returns	a	numerical	value,	indicating	the	price	at	the	initial	entry	into	the	specified
position.

Usage

EntryPrice(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	entry	price	for	the	current	position,	to	Value1
variable:

Value1=EntryPrice;	
Assign	a	value,	indicating	the	entry	price	for	the	most	recently	closed	position,	to
Value1	variable:

Value1=EntryPrice(1);

773

EntryPrice_Checked

Returns	a	numerical	value,	indicating	the	price	at	the	initial	entry	into	the	specified
position.

Usage

EntryPrice_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	EntryPrice_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	entry	price	for	the	current	position,	to	Value1
variable:

Value1	=	EntryPrice_Checked;

Assign	a	value,	indicating	the	entry	price	for	the	most	recently	closed	position,	to
Value1	variable:

Value1	=	EntryPrice_Checked	(1);

774

EntryTime

Returns	a	numerical	value,	indicating	the	time	of	initial	entry	into	the	specified
position.	The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00
PM.

Usage

EntryTime(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	time	that	the	current	position	has	been	entered,	to
Value1	variable:

Value1=EntryTime;

Value	1	will	equal	to	1015	for	10:15	AM	

Assign	a	value,	indicating	the	time	that	the	most	recently	closed	position	has	been
entered,	to	Value1	variable:

Value1=EntryTime(1);

Value	1	will	equal	to	1545	for	3:45	PM

775

776

EntryTime_Checked

Returns	a	numerical	value,	indicating	the	time	of	initial	entry	into	the	specified
position.

The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

EntryTime_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	EntryTime_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	time	that	the	current	position	has	been	entered,	to
Value1	variable:

Value1	=	EntryTime_Checked;

Value	1	will	equal	to	1015	for	10:15	AM.	

Assign	a	value,	indicating	the	time	that	the	most	recently	closed	position	has	been
entered,	to	Value1	variable:

777

Value1	=	EntryTime_Checked	(1);

Value	1	will	equal	to	1015	for	10:15	AM.

778

ExitDate

Returns	a	numerical	value,	indicating	the	date	of	the	complete	exit	from	the
specified	position.	The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is
the	number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

ExitDate(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														1	-	the	last	position	closed	(one	position	back);	
														2	-	two	positions	back,	etc.

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	date	that	the	most	recently	closed	position	has	been
exited,	to	Value1	variable:

Value1=ExitDate(1);

Value	1	will	equal	to	1081030	for	the	exit	date	of	October	30th,	2008

779

ExitDateTime

Returns	a	double-precision	decimal	DateTime	value	indicating	the	date	and	time	of
the	bar	where	the	order	that	closed	a	specified	position	was	generated.	The	integer
portion	of	the	DateTime	value	indicates	the	number	of	days	that	have	elapsed	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	indicates	the
fraction	of	the	day	that	has	passed	since	midnight.	DateTime	is	a	floating	point
value	with	high	precision.	It	allows	accessing	millisecond	time	stamps	of	the	bar.

Usage

ExitDateTime(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														1	-	the	last	position	closed	(one	position	back);	
														2	-	two	positions	back,	etc.

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	date	that	the	most	recently	closed	position	has	been
exited,	to	Value1	variable:

Value1	=	ExitDateTime(1);

780

ExitDateTime_Checked

Returns	a	double-precision	decimal	DateTime	value	indicating	the	date	and	time	of
the	bar	where	the	order	that	closed	a	specified	position	was	generated.	The	integer
portion	of	the	DateTime	value	indicates	the	number	of	days	that	have	elapsed	since
January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value	indicates	the
fraction	of	the	day	that	has	passed	since	midnight.	DateTime	is	a	floating	point
value	with	high	precision.	It	allows	accessing	millisecond	time	stamps	of	the	bar.

Usage

ExitDateTime_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														1	-	the	last	position	closed	(one	position	back);	
														2	-	two	positions	back,	etc.

Notes

This	function	can	only	be	used	in	signals.

If	PosBack	value	is	greater	that	the	real	number	of	previously	opened	positions,
ExitDateTime_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	date	that	the	most	recently	closed	position	has	been
exited,	to	Value1	variable:

Value1	=	ExitDateTime_Checked(1);

781

ExitDate_Checked

Returns	a	numerical	value,	indicating	the	date	of	the	complete	exit	from	the
specified	position.	The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is
the	number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

ExitDate_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														1	-	the	last	position	closed	(one	position	back);	
														2	-	two	positions	back,	etc.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	ExitDate_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	date	that	the	most	recently	closed	position	has	been
exited,	to	Value1	variable:

Value1	=	ExitDate_Checked	(1);

Value	1	will	equal	to	1081030	for	the	exit	date	of	October	30th,	2008.

782

ExitName

Returns	the	name	of	the	order	which	closed	the	position.

Usage

ExitName(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

Notes

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Example

ExitName(1)	will	return	a	value	of	"sell	LX"	for	the	last	closed	position,	if	this
position	was	closed	by	the	order	with	"sell	LX"	name.

783

ExitPrice

Returns	a	numerical	value,	indicating	the	price	at	a	complete	exit	from	the	specified
position.

Usage

ExitPrice(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														1	-	the	last	position	closed	(one	position	back);	
														2	-	two	positions	back,	etc.

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	exit	price	of	the	most	recently	closed	position,	to
Value1	variable:

Value1=ExitPrice(1);

784

ExitPrice_Checked

Returns	a	numerical	value,	indicating	the	price	at	a	complete	exit	from	the	specified
position.

Usage

ExitPrice_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	ExitPrice_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	exit	price	of	the	most	recently	closed	position,	to
Value1	variable:

Value1	=	ExitPrice_Checked	(1);

785

ExitTime

Returns	a	numerical	value,	indicating	the	time	at	the	complete	exit	from	the
specified	position.	The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300
=	1:00	PM.

Usage

ExitTime(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														1	-	the	last	position	closed	(one	position	back);	
														2	-	two	positions	back,	etc.

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	time	that	the	most	recently	closed	position	has	been
exited,	to	Value1	variable:

Value1=ExitTime(1);

Value	1	will	equal	to	1545	for	3:45	PM

786

ExitTime_Checked

Returns	a	numerical	value,	indicating	the	time	at	the	complete	exit	from	the
specified	position.	The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300
=	1:00	PM.

Usage

ExitTime_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	ExitTime_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	time	that	the	most	recently	closed	position	has	been
exited,	to	Value1	variable:

Value1	=	ExitTime_Checked(1);

Value	1	will	equal	to	1545	for	3:45	PM.

787

i_MarketPosition_at_Broker
Returns	a	numerical	value,	indicating	the	number	of	contracts	and	the	type	of
position	at	the	broker	for	the	symbol.

A	positive	value	indicates	a	long	position	and	a	negative	value	indicates	a	short
position.

A	zero	('0')	is	returned	when	the	current	position	is	flat,	or	if	Automated	Trading	is
not	turned	on.

Usage

i_MarketPosition_at_Broker

Notes

This	function	can	only	be	used	in	indicators.

This	function	differs	from	the	marketposition	keyword	in	that	it	cannot	take	an
argument	to	reference	past	values.	By	saving	the	value	of
i_MarketPosition_at_Broker	to	a	Numeric	Variable,	it's	possible	to	reference	the
position	at	the	broker	for	previous	bars	or	tick.

I_MarketPosition_at_Broker	works	with	all	brokers,	though	there	are	some
peculiarities	with	MIG	Bank	and	Trading	Technologies:	For	MIG	Bank,
MultiCharts	calculates	the	broker	position	after	the	broker	profile	has	been
connected	since	this	isn't	provided	by	MIG	Bank.	The	Trading	Technologies	API
doesn't	provide	information	about	positions	opened	the	day	before,	in	which	case
MultiCharts	uses	the	average	of	all	complete	long	(short)	trades	for	the	day	to
calculate	the	EntryPrice.

Important

If	Automated	Trading	was	manually	turned	off	by	the	user,	the	value	returned	by	the
keyword	stops	changing,	and	may	remain	unequal	to	'0'.

788

Example

i_MarketPosition_at_Broker	will	will	return	'17'	if	the	current	position	at	the
broker	for	the	strategy	is	17	contracts	long.

i_MarketPosition_at_Broker	will	return	'-132'	if	the	current	position	at	the
broker	for	the	strategy	is	132	contracts	short.

i_MarketPosition_at_Broker	will	return	'0'	if	the	current	position	at	the	broker
for	the	strategy	is	flat.

i_MarketPosition_at_Broker	will	return	'0'	if	the	Automated	Trading	Mode	is
not	turned	on.

789

i_MarketPosition_at_Broker_for_The_Strategy
Returns	a	numerical	value,	indicating	the	number	of	contracts	and	the	type	of
position	at	the	broker	for	the	strategy.

A	positive	value	indicates	a	long	position	and	a	negative	value	indicates	a	short
position.

A	zero	('0')	is	returned	when	the	current	position	is	flat,	or	if	Automated	Trading	is
not	turned	on.

Usage

i_MarketPosition_at_Broker_for_The_Strategy

Notes

This	function	can	only	be	used	in	indicators.

This	function	differs	from	the	marketposition	keyword	in	that	it	cannot	take	an
argument	to	reference	past	values.	By	saving	the	value	of
i_MarketPosition_at_Broker_for_The_Strategy	to	a	Numeric	Variable,	it's	possible
to	reference	the	position	at	the	broker	for	previous	bars	or	tick.

Important

If	Automated	Trading	was	manually	turned	off	by	the	user,	the	value	returned	by	the
keyword	stops	changing,	and	may	remain	unequal	to	'0'.

Example

i_MarketPosition_at_Broker_for_The_Strategy	will	will	return	'17'	if	the
current	position	at	the	broker	for	the	strategy	is	17	contracts	long.

i_MarketPosition_at_Broker_for_The_Strategy	will	return	'-132'	if	the	current
position	at	the	broker	for	the	strategy	is	132	contracts	short.

790

i_MarketPosition_at_Broker_for_The_Strategy	will	return	'0'	if	the	current
position	at	the	broker	for	the	strategy	is	flat.

i_MarketPosition_at_Broker_for_The_Strategy	will	return	'0'	if	the	Automated
Trading	Mode	is	not	turned	on.

791

MarketPosition

Returns	a	numerical	value,	indicating	the	type	of	the	specified	position.

A	value	of	1	indicates	a	long	position,	-1	indicates	a	short	position,	and	0	is
returned	only	if	the	current	position	is	specified	and	indicates	that	the	current
position	is	flat.

Usage

MarketPosition(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

MarketPosition		will	return	a	value	of	0	if	the	current	position	is	flat

MarketPosition	(1)		will	return	a	value	of	-1	if	the	most	recently	closed	position
was	a	short	position

792

MarketPosition_at_Broker
Returns	a	numerical	value,	indicating	the	number	of	contracts	and	the	type	of
position	at	the	broker	for	the	symbol.

A	positive	value	indicates	a	long	position	and	a	negative	value	indicates	a	short
position.

A	zero	('0')	is	returned	when	the	current	position	is	flat,	or	if	Automated	Trading	is
not	turned	on.

Usage

MarketPosition_at_Broker

Notes

This	function	can	only	be	used	in	signals	and	functions.

This	function	differs	from	the	marketposition	keyword	in	that	it	cannot	take	an
argument	to	reference	past	values.

This	function	can	only	be	used	with	Interactive	Brokers,	Patsystems,	and	Zen-Fire.

Important

If	Automated	Trading	was	manually	turned	off	by	the	user,	the	value	returned	by	the
keyword	stops	changing,	and	may	remain	unequal	to	'0'.

Example

MarketPosition_at_Broker	will	will	return	'17'	if	the	current	position	at	the
broker	for	the	strategy	is	17	contracts	long.

MarketPosition_at_Broker	will	return	'-132'	if	the	current	position	at	the	broker
for	the	strategy	is	132	contracts	short.

793

MarketPosition_at_Broker	will	return	'0'	if	the	current	position	at	the	broker	for
the	strategy	is	flat.

MarketPosition_at_Broker	will	return	'0'	if	the	Automated	Trading	Mode	is	not
turned	on.

794

MarketPosition_at_Broker_for_The_Strategy
Returns	a	numerical	value,	indicating	the	number	of	contracts	and	the	type	of
position	at	the	broker	for	the	strategy.

A	positive	value	indicates	a	long	position	and	a	negative	value	indicates	a	short
position.

A	zero	('0')	is	returned	when	the	current	position	is	flat,	or	if	Automated	Trading	is
not	turned	on.

Usage

MarketPosition_at_Broker_for_The_Strategy

Notes

This	function	can	only	be	used	in	signals	and	functions.

This	function	differs	from	the	marketposition	keyword	in	that	it	cannot	take	an
argument	to	reference	past	values.

Important

If	Automated	Trading	was	manually	turned	off	by	the	user,	the	value	returned	by	the
keyword	stops	changing,	and	may	remain	unequal	to	'0'.

Example

MarketPosition_at_Broker_for_The_Strategy	will	will	return	'17'	if	the	current
position	at	the	broker	for	the	strategy	is	17	contracts	long.

MarketPosition_at_Broker_for_The_Strategy	will	return	'-132'	if	the	current
position	at	the	broker	for	the	strategy	is	132	contracts	short.

MarketPosition_at_Broker_for_The_Strategy	will	return	'0'	if	the	current

795

position	at	the	broker	for	the	strategy	is	flat.

MarketPosition_at_Broker_for_The_Strategy	will	return	'0'	if	the	Automated
Trading	Mode	is	not	turned	on.

796

MarketPosition_Checked

Returns	a	numerical	value,	indicating	the	type	of	the	specified	position.

A	value	of	1	indicates	a	long	position,	-1	indicates	a	short	position,	and	0	is
returned	only	if	the	current	position	is	specified	and	indicates	that	the	current
position	is	flat.

Usage

MarketPosition_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	MarketPosition_Checked	will	generate	an	error.

Example

MarketPosition_Checked	-	will	return	a	value	of	0	if	the	current	position	is	flat.

MarketPosition_Checked	(1)	-	will	return	a	value	of	-1	if	the	most	recently	closed
position	was	a	short	position.

797

MaxContractProfit

Returns	a	numerical	value,	indicating	the	largest	gain	reached	per	each	contract	or
share	of	a	current	multi-share	or	multi-contract	position.

Usage

MaxContractProfit

Notes

This	function	can	only	be	used	in	signals.

Example

Assign	a	value,	indicating	the	largest	gain	reached	per	contract	or	share,	to	Value1
variable:

Value1=MaxContractProfit;

798

MaxContractProfit_Checked

Returns	a	numerical	value,	indicating	the	largest	gain	reached	per	each	contract	or
share	of	a	current	multi-share	or	multi-contract	position.

Usage

MaxContractProfit_Checked

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	MaxContractProfit_Checked	will	generate	an	error.

Example

Assign	a	value,	indicating	the	largest	gain	reached	per	contract	or	share,	to	Value1
variable:

Value1	=	MaxContractProfit_Checked

799

MaxContracts

Returns	an	absolute	numerical	value,	indicating	the	maximum	number	of	contracts
held	during	the	specified	position.

Usage

MaxContracts(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

MaxContracts		will	return	a	value	of	0	if	the	current	position	is	flat

MaxContracts	(1)		will	return	a	value	of	10	if	the	most	recently	closed	position	was
long	or	short	a	maximum	of	10	contracts

800

MaxContracts_Checked

Returns	an	absolute	numerical	value,	indicating	the	maximum	number	of	contracts
held	during	the	specified	position.

Usage

MaxContracts_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	MaxContracts_Checked	will	generate	an	error.

Example

MaxContracts_Checked	-	will	return	a	value	of	0	if	the	current	position	is	flat.

MaxContracts_Checked	(1)	-	will	return	a	value	of	10	if	the	most	recently	closed
position	was	long	or	short	a	maximum	of	10	contracts.

801

MaxEntries

Returns	a	numerical	value,	indicating	the	total	number	of	entries	for	the	specified
position.

Usage

MaxEntries(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

MaxEntries	(1)		will	return	a	value	of	2	if	there	were	two	separate	entries	for	the
most	recently	closed	position

802

MaxEntries_Checked

Returns	a	numerical	value,	indicating	the	total	number	of	entries	for	the	specified
position.

Usage

MaxEntries_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	MaxEntries_Checked	will	generate	an	error.

Example

MaxEntries_Checked	(1)	-	will	return	a	value	of	2	if	there	were	two	separate
entries	for	the	most	recently	closed	position.

803

MaxPositionLoss

Returns	a	negative	numerical	value,	indicating	the	largest	loss	reached	while	the
specified	position	was	held.

Usage

MaxPositionLoss(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

MaxPositionLoss		will	return	a	value	of	0	if	the	value	of	the	open	position	has	not
dropped	below	the	entry	price	at	any	time	while	it	was	held

MaxPositionLoss	(1)		will	return	a	value	of	-10	if	the	most	recently	closed
position	has	dropped	in	value	as	much	as	¤10	while	it	was	held

804

MaxPositionLoss_Checked

Returns	a	negative	numerical	value,	indicating	the	largest	loss	reached	while	the
specified	position	was	held.

Usage

MaxPositionLoss_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	MaxPositionLoss_Checked	will	generate	an	error.

Example

MaxPositionLoss_Checked;	-	will	return	a	value	of	0	if	the	value	of	the	open
position	has	not	dropped	below	the	entry	price	at	any	time	while	it	was	held.

MaxPositionLoss_Checked	(1);	-	will	return	a	value	of	-10	if	the	most	recently
closed	position	has	dropped	in	value	as	much	as	¤10	while	it	was	held.

805

MaxPositionProfit

Returns	a	numerical	value,	indicating	the	largest	gain	reached	while	the	specified
position	was	held.

Usage

MaxPositionProfit(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

MaxPositionProfit		will	return	a	value	of	0	if	the	value	of	the	open	position	has
not	increased	at	any	time	while	it	was	held

MaxPositionProfit	(1)		will	return	a	value	of	10	if	the	most	recently	closed
position	has	gained	in	value	as	much	as	¤10	while	it	was	held

806

MaxPositionProfit_Checked

Returns	a	numerical	value,	indicating	the	largest	gain	reached	while	the	specified
position	was	held.

Usage

MaxPositionProfit_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	MaxPositionProfit_Checked	will	generate	an	error.

Example

MaxPositionProfit_Checked;	-	will	return	a	value	of	0	if	the	value	of	the	open
position	has	not	increased	at	any	time	while	it	was	held.

MaxPositionProfit_Checked	(1);	-	will	return	a	value	of	10	if	the	most	recently
closed	position	has	gained	in	value	as	much	as	¤10	while	it	was	held.

807

MaxPositionsAgo

Returns	the	number	of	closed	positions	for	the	strategy	on	the	current	moment.

Usage

MaxPositionsAgo

Note

This	function	can	only	be	used	in	Signals.

Example

Calculate	the	PnL	for	all	closed	positions	up	to	the	current	moment:

var:	TotalProfitLoss(0),	idx(0);	
for	idx	=	1	to	MaxPositionsAgo	Begin	
TotalProfitLoss	=	PositionProfit(idx);	
End;

808

MaxShares
Same	as	MaxContracts

809

MaxShares_Checked
Same	as	MaxContracts_Checked

810

OpenPositionProfit

Returns	a	numerical	value,	indicating	the	current	unrealized	profit	or	loss	for	the
open	position.

Usage

OpenPositionProfit

Notes

This	function	can	only	be	used	in	signals.

Example

OpenPositionProfit		will	return	a	value	of	0	if	the	current	position	is	flat

OpenPositionProfit		will	return	a	value	of	10	if	the	value	of	the	open	position	has
increased	by	¤10	since	it	was	entered

OpenPositionProfit		will	return	a	value	of	-5	if	the	value	of	the	open	position	has
decreased	by	¤5	since	it	was	entered

811

PositionProfit

Returns	a	numerical	value,	indicating	the	total	realized	profit	or	loss	for	the
specified	closed	position.

Usage

PositionProfit(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	closed	position:

														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

This	function	can	only	be	used	in	signals.

Example

PositionProfit	(0)		will	return	a	value	of	5	if	the	value	of	the	open	position	has
increased	by	¤5	since	it	was	entered

PositionProfit	(1)		will	return	a	value	of	-5	if	the	most	recently	closed	position
has	generated	a	loss	of	¤5

812

PositionProfit_Checked

Returns	a	numerical	value,	indicating	the	profit	or	loss	for	the	specified	position.

Usage

PositionProfit_Checked(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;	
														1	-	one	position	back	(the	last	position	closed);	
														2	-	two	positions	back,	etc.

If	PosBack	is	not	specified,	a	value	for	the	open	position	will	be	returned.

Notes

1.	 This	function	can	only	be	used	in	signals.
2.	 If	PosBack	value	is	greater	that	the	real	number	of	previously	opened

positions,	PositionProfit_Checked	will	generate	an	error.

Example

PositionProfit_Checked;	-	will	return	a	value	of	0	if	the	current	position	is	flat.

PositionProfit_Checked	(0);	-	will	return	a	value	of	5	if	the	value	of	the	open
position	has	increased	by	¤5	since	it	was	entered.

PositionProfit_Checked	(1);	-	will	return	a	value	of	-5	if	the	most	recently
closed	position	has	generated	a	loss	of	¤5.

813

ChangeMarketPosition

Places	the	order	with	set	name	and	price	on	the	chart.

Usage

ChangeMarketPosition	(Delta,	Price,	Name)

Where:	Delta	-	number	of	contracts	by	which	current	market	position	should	be
changed;	
													Price	-	order	filling	price;	
													Name	-	name	of	the	order	that	changes	the	position.

Notes

Can	be	used	as	a	mean	of	synchronization	of	strategy	market	position	with	a
broker.

Example

If	MarketPosition	=	2	then	ChangeMarketPosition	(-2,100,"LX")

Will	place	close	order	with	the	name	"LX"	and	the	price	100	if	current
marketposition	=2

If	MarketPosition	=	0	then	ChangeMarketPosition	(-2,100,"SE")

Will	place	open	order	with	the	name	"SE"	and	the	price	100	if	current
marketposition	=0

Please	refer	to	"!From	Strategy	To	Broker	MP	Synchronizer!"	default	signal	for
more	examples.

814

PlaceMarketOrder

Places	market	order	at	the	broker	without	position	changing	on	the	chart.

Usage

PlaceMarketOrder(IsBuy,	IsEntry,	Contracts)

Where:	IsBuy	-	indicates	whether	order	is	buy	or	sell;	
													IsEntry	-	indicates	whether	order	is	entry	or	exit;	
													Contracts	-	indicates	the	number	of	contracts/shares	of	the	order.

Notes

Works	only	with	auto	trading	turned	on.

Can	be	used	as	a	mean	of	synchronization	of	strategy	market	position	with	a
broker.

Example

If	MarketPosition*CurrentContracts	=	2	and	MarketPosition_at_Broker	=	4
then	PlaceMarketOrder	(false,	false,	2);

will	generate	sell	market	order	for	2	contracts	to	synchronize	market	position	at
broker	with	the	strategy	position

Please	refer	to	"!From	Strategy	To	Broker	MP	Synchronizer!"	default	signal	for
more	examples.

815

OpenEntriesCount

Same	as	CurrentEntries.

816

OpenEntryComission

Returns	a	numerical	value,	indicating	the	amount	of	cash	assets	in	the	units	of	the
selected	currency	spent	on	the	commission	for	specified	trade.

Usage

OpenEntryComission(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryComission(1)	will	return	a	value	of	1	if	there	has	been	one	unit	of	the
selected	currency	comission	for	the	second	trade	of	the	open	position.

817

OpenEntryContracts

Returns	a	numerical	value,	indicating	the	quantity	of	contracts	of	specified	entry
order	into	the	open	position.

Usage

OpenEntryContracts(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryContracts	will	return	a	value	of	1	for	the	first	trade	of	the	3	contracts
open	position	if	it	has	two	open	trades	for	1	and	2	contracts.

OpenEntryContracts(1)	will	return	a	value	of	2	for	the	second	trade	of	the	3
contracts	open	position	if	it	has	two	open	trades	for	1	and	2	contracts.

818

OpenEntryDate

Returns	a	numerical	value,	indicating	the	date	of	specified	entry	into	the	open
position.

The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

OpenEntryDate(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryDate(1)	will	return	1110402	for	the	open	position	if	the	second	trade
was	generated	on	April	2nd,	2011.

819

OpenEntryMaxProfit

Returns	a	numerical	value,	indicating	maximal	value	of	OpenEntryProfit	for	the
time	from	entry	order	execution.

Usage

OpenEntryMaxProfit(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryMaxProfit	will	return	a	value	of	20	for	the	first	trade	of	the	open
position	if	it	has	ever	reached	20	units	of	the	specified	currency	maximum	profit.

820

OpenEntryMaxProfitPerContract

Returns	a	numerical	value,	indicating	maximal	value	of
OpenEntryProfitPerContract	for	the	time	from	entry	order	execution.

Usage

OpenEntryMaxProfitPerContract(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryMaxProfitPerContract(1)	will	return	a	value	of	1.5	for	the	first	trade
of	the	open	position	if	it	has	ever	reached	1.5	units	of	the	specified	currency	per
contract	profit.

821

OpenEntryMinProfit

Returns	a	numerical	value,	indicating	minimal	value	of	OpenEntryProfit	for	the
time	from	entry	order	execution.

Usage

OpenEntryMinProfit(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryMinProfit(1)	will	return	a	value	of	-15	for	the	second	trade	of	the	open
position	if	it	has	ever	reached	15	units	of	the	specified	currency	loss.

822

OpenEntryMinProfitPerContract

Returns	a	numerical	value,	indicating	minimal	value	of
OpenEntryProfitPerContract	for	the	time	from	entry	order	execution.

Usage

OpenEntryMinProfitPerContract(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryMinProfitPerContract(1)	will	return	a	value	of	-1.5	for	the	second
trade	of	the	open	position	if	it	has	ever	reached	1.5	units	of	the	specified	currency
per	contract	loss.

823

OpenEntryPrice

Returns	a	numerical	value,	indicating	the	price	of	specified	entry	into	the	open
position.

Usage

OpenEntryPrice(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryPrice	will	return	a	value	of	101	for	the	first	trade	of	the	open	position	if
it	was	executed	at	101	price	level.

OpenEntryPrice(1)	will	return	a	value	of	101.5	for	the	second	trade	of	the	open
position	if	it	was	executed	at	101.5	price	level.

824

OpenEntryProfit

Returns	a	numerical	value,	indicating	the	profit	(loss	if	negative)	of	specified	entry
into	the	open	position	in	the	specified	currency.

Usage

OpenEntryProfit(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryProfit	will	return	a	value	of	10	for	the	first	trade	of	the	open	position	if
it	has	10	units	of	the	specified	currency	profit	at	the	moment.

OpenEntryProfit(1)	will	return	a	value	of	-10	for	the	second	trade	of	the	open
position	if	it	has	reached	10	units	of	the	specified	currency	loss	at	the	moment.

825

OpenEntryProfitPerContract

Returns	a	numerical	value,	indicating	the	profit	(loss	if	negative)	per	contract	of
specified	entry	in	the	specified	currency.

Usage

OpenEntryProfitPerContract(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryProfitPerContract	will	return	a	value	of	1	for	the	first	trade	of	the
open	position	if	it	has	1	unit	of	the	selected	currency	per	contract	profit	at	the
moment.

OpenEntryProfitPerContract(1)	will	return	a	value	of	-0.5	for	the	second	trade
of	the	open	position	if	it	has	reached	0.5	units	of	the	selected	currency	per	contract
loss	at	the	moment.

826

OpenEntryTime

Returns	a	numerical	value,	indicating	the	time	of	specified	entry	into	the	open
position.

The	time	is	indicated	in	the	HHmm	format,	where	HH	is	the	hour	in	24	hours
format	and	mm	are	minutes.

Usage

OpenEntryTime(EntryIndex)

Where:	EntryIndex	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	open	position	use	OpenEntriesCount

Example

OpenEntryTime	will	return	a	value	of	1015	for	the	first	trade	of	the	open	position	if
it	was	executed	at	10:15	AM.

OpenEntryTime(1)	will	return	a	value	of	1545	for	the	second	trade	of	the	open
position	if	it	was	executed	at	3:45	PM.

827

PosTradeCommission

Returns	an	absolute	numerical	value,	indicating	the	commission	amount	spent	for
the	specified	trade.

Usage

PosTradeCommission(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeCommission(0,1)	will	return	a	value	of	5	for	the	second	trade	of	the	open
position,	if	the	commission	for	this	trade	is	5	units	of	the	selected	currency.

828

PosTradeCount

Returns	a	numerical	value,	indicating	the	total	number	of	entries	for	the	specified
position.

Usage

PosTradeCount(PosBack)

Where:	PosBack	-	a	numerical	expression,	specifying	the	position:

										0	-	open	position;

										1	-	one	position	back	(the	last	position	closed);

										2	-	two	positions	back,	etc.

Notes

This	function	can	only	be	used	in	signals.	Please	note	that	if	there	is	a	single	entry
and	multiple	scalping	exits,	each	exit	will	have	its	own	entry	in	this	case	and	the
count	will	increase	after	each	partial	exit.

Example

PosTradeCount	(1)	will	return	a	value	of	2	if	there	were	two	separate	entries	for
the	most	recently	closed	position.

829

PosTradeEntryBar

Returns	an	absolute	numerical	value,	indicating	bar	number	of	the	trade	entry
order.

Usage

PosTradeEntryBar(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeEntryBar(0,1)	will	return	a	value	of	25	for	the	second	trade	of	the	open
position,	if	this	trade	was	opened	on	25th	bar.

830

PosTradeEntryCategory

Returns	an	absolute	numerical	value,	indicating	trade	entry	order	category.

The	following	types	are	possible:

		1	=	Stop	order	(buy	next	bar	at	close	-	1	point	stop)	
		2	=	Limit	order	(buy	next	bar	at	close	+	1	point	limit)	
		3	=	Market	order	(buy	next	bar	market)	
		4	=	Market	at	Close	order	(buy	this	bar	at	close)	
		5	=	Market	at	Open	order	(buy	next	bar	open)	
		6	=	Reserved	for	special	orders	
		7	=	Reserved	for	special	orders	
		8	=	StopLimit	order	(buy	1	contracts	next	bar	at	close	-	2	point	stop	close	+	2
point	limit)

Usage

PosTradeEntryCategory(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

831

Example

PosTradeEntryCategory(0,1)	will	return	a	value	of	1	for	the	second	trade	of	the
open	position,	if	the	order	type	was	Stop	Order.

832

PosTradeEntryDateTime

Returns	double-precision	decimal	DateTime	for	entry	order.	As	an	example	see
ComputerDateTime

Usage

PosTradeEntryDateTime(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeEntryDateTime(0,1)	will	return	a	value	of	39448.25000000	for	the
second	trade	of	the	open	position,	if	this	trade	was	opened	at	6:00	AM	on	January
1st,	2008.

833

PosTradeEntryName

Returns	entry	order	name.	Entry	Name	is	indicated	on	the	chart	and	in	Order	and
Position	Tracker	Window.

Usage

PosTradeEntryName(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeEntryName(0,1)	will	return	a	value	of	"buy	LE"	for	the	second	trade	of
the	open	position,	if	this	trade	was	opened	by	the	order	with	"buy	LE"	name.

834

PosTradeEntryPrice

Returns	an	absolute	numerical	value,	indicating	the	execution	price	of	trade	entry
order.

Usage

PosTradeEntryPrice(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeEntryPrice(0,1)	will	return	a	value	of	100.2	for	the	second	trade	of	the
open	position,	if	this	trade	was	opened	by	the	order	filled	at	100.2.

835

PosTradeExitBar

Returns	an	absolute	numerical	value,	indicating	bar	number	of	the	trade	exit	order.

Usage

PosTradeExitBar(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeExitBar(0,1)	will	return	a	value	of	28	for	the	second	trade	of	the	open
position,	if	this	trade	was	closed	on	28th	bar.

836

PosTradeExitCategory

Returns	an	absolute	numerical	value,	indicating	trade	exit	order	category.

The	following	types	are	possible:

		1	=	Stop	order	(buy	next	bar	at	close	-	1	point	stop)	
		2	=	Limit	order	(buy	next	bar	at	close	+	1	point	limit)	
		3	=	Market	order	(buy	next	bar	market)	
		4	=	Market	at	Close	order	(buy	this	bar	at	close)	
		5	=	Market	at	Open	order	(buy	next	bar	open)	
		6	=	Reserved	for	special	orders	
		7	=	Reserved	for	special	orders	
		8	=	StopLimit	order	(buy	1	contracts	next	bar	at	close	-	2	point	stop	close	+	2
point	limit)

Usage

PosTradeExitCategory(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

837

Example

PosTradeExitCategory(0,1)	will	return	a	value	of	3	for	the	second	trade	of	the
open	position,	if	the	closing	order	type	was	Market	Order.

838

PosTradeExitDateTime

Returns	double-precision	decimal	DateTime	for	exit	order.	As	an	example	see
ComputerDateTime

Usage

PosTradeExitDateTime(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeEntryDateTime(1,1)	will	return	a	value	of	39448.25000000	for	the
second	trade	of	the	last	closed	position,	if	this	trade	was	closed	at	6:00	AM	on
January	1st,	2008.

839

PosTradeExitName

Returns	exit	order	name.	Exit	Name	is	indicated	on	the	chart	and	in	Order	and
Position	Tracker	Window.

Usage

PosTradeExitName(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeExitName(0,1)	will	return	a	value	of	"sell	LX"	for	the	second	trade	of	the
open	position,	if	this	trade	was	closed	by	the	order	with	"sell	LX"	name.

840

PosTradeExitPrice

Returns	an	absolute	numerical	value,	indicating	the	execution	price	of	trade	exit
order.

Usage

PosTradeExitPrice(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeExitPrice(0,1)	will	return	a	value	value	of	100.5	for	the	second	trade	of
the	open	position,	if	this	trade	was	closed	by	the	order	filled	at	100.5.

841

PosTradeIsLong

Returns	True	value	if	the	trade	was	opened	by	buy	order,	otherwise	False	value	is
returned.

Usage

PosTradeIsLong(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeIsLong(0,1)	will	return	True	for	the	second	trade	of	the	open	position,	if
this	trade	was	opened	by	"buy"	order.

842

PosTradeIsOpen

Returns	True	value	if	the	trade	is	open,	False	value	if	the	trade	is	closed.

It	makes	sense	to	check	the	trades	of	the	open	position.

For	other	positions	False	is	always	returned.

Usage

PosTradeIsOpen(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeIsOpen(0,1)	will	return	True	for	the	second	trade	of	the	open	position,	if
this	trade	is	opened	(there	was	no	closing	order).

843

PosTradeProfit

Returns	an	absolute	numerical	value,	indicating	the	profit	(or	loss	if	negative)	of
the	specified	trade.

Usage

PosTradeProfit(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeProfit(0,1)	will	return	a	value	of	3	for	the	second	trade	of	the	open
position,	if	the	profit	for	this	trade	is	3	units	of	the	selected	currency.

844

PosTradeSize

Returns	an	absolute	numerical	value,	indicating	the	number	of	contracts	or	shares
in	the	specified	trade.

Usage

PosTradeSize(PosAgo,TradeNumber)

Where:	PosAgo	-	a	numerical	expression,	specifying	the	position:

														0	-	open	position;

														1	-	one	position	back	(the	last	position	closed);

														2	-	two	positions	back,	etc.

													TradeNumber	-	a	numerical	expression,	specifying	the	number	of	trade
(zero-based).

Notes

This	function	can	only	be	used	in	signals.

To	retrieve	the	total	number	of	trades	in	specified	position	use	PosTradeCount

Example

PosTradeSize(0,1)	will	return	a	value	of	2	for	the	second	trade	of	the	open
position,	if	this	trade	had	a	quantity	of	2.

845

Commission
Returns	the	commission	currency	value	entered	in	the	Strategy	Properties	window.

Usage

Commission

Notes

This	function	can	only	be	used	in	signals.

Example

Commission		will	return	a	value	of	10.00	if	the	commission	has	been	set	to	¤10

846

GetStrategyName
Retained	for	backward	compatibility.

847

Margin
Returns	a	value	in	units	of	the	selected	currency	that	indicates	the	margin	value	per
contract.

Usage

Margin

Notes

The	margin	value	may	not	be	returned	for	all	types	of	the	securities.	The	margin
value	is	returned	for	futures	and	options.

Example

Margin

848

Slippage
Returns	the	slippage	currency	value	entered	in	the	Strategy	Properties	window.

Usage

Slippage

Notes

This	function	can	only	be	used	in	signals.

Example

Slippage		will	return	a	value	of	0.25	if	the	slippage	has	been	set	to	¤0.25

849

MC_Text_GetActive
Returns	a	numerical	value	indicating	the	text	ID	number	of	the	currently	selected
text;	returns	a	value	of	-1	if	no	text	is	currently	selected.

Usage

MC_Text_GetActive

Example

Assign	a	value,	indicating	the	text	ID	number	of	the	currently	selected	text,	to
Value1	variable:	Value1	=	MC_Text_GetActive;

850

Text_Anchor_to_Bars

Anchors	the	corresponding	text	drawing	to	the	visible	bar	index;	returns	a	value	of
0	if	the	operation	was	performed	successfully,	and	a	value	of	-2	if	the	specified
trendline	ID	number	is	invalid.

Usage

Text_Anchor_to_Bars(Text_ID,LogicalExpression)

Where:	Text_ID	is	a	numerical	expression	specifying	the	text	drawing	ID	number	
													LogicalExpression	is	a	logical	value;	True	=	add	option	and	False	=
remove	option

Notes

Text	ID	number	is	returned	by	Text_New	when	the	text	drawing	is	created.

Example

Anchor	the	text	drawing	with	an	ID	number	of	3	to	the	visible	bar	index:

Value1=Text_Anchor_to_Bars(3,True);

851

Text_Delete

Removes	a	text	object	with	the	specified	ID	number	from	a	chart;	returns	a	value	of
0	if	the	object	was	successfully	removed,	and	a	value	of	-2	if	the	specified	object	ID
number	is	invalid.

Usage

Text_Delete(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Remove	the	text	object	with	an	ID	number	of	3:

Value1=Text_Delete(3);

852

Text_GetActive

Returns	a	numerical	value	indicating	the	object	ID	number	of	the	currently	selected
text	object;	returns	a	value	of	-1	if	no	text	objects	are	currently	selected.

Usage

Text_GetActive

Notes

An	object-specific	ID	number	is	assigned	by	Text_New	when	the	text	object	is
created.

Example

Assign	a	value,	indicating	the	object	ID	number	of	the	currently	selected	text	object,
to	Value1	variable:

Value1=Text_GetActive;

853

Text_GetAttribute

Returns	a	logical	value	indicating	the	setting	for	an	attribute	of	a	text	object	with	the
specified	ID	number;	returns	a	value	of	True	if	the	attribute	is	set	to	on,	and	a	value
of	False	if	the	attribute	is	set	to	off	or	if	the	specified	object	ID	number	is	invalid.

The	settings	of	the	following	attributes	can	be	returned:	border,	bold,	italic,	strike-
out,	and	underline.

Usage

Text_GetAttribute(ObjectID,Attribute)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Attribute	-	a	numerical	expression	specifying	the	attribute:

	0	-	border
	1	-	bold
	2	-	italic
	3	-	strike-out
	4	-	underline

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	a	true/false	value,	indicating	the	setting	of	"bold"	attribute	for	the	text	object
with	an	ID	number	of	3,	to	Bold	variable:

Variable:Bold(False);	

854

Bold=Text_GetAttribute(3,1);

855

Text_GetBarNumber

Returns	a	numerical	value	representing	the	barnumber	of	the	text	object	with	a
specified	ID;	returns	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_GetBarNumber(ref);

Parameters:

ref	-	ID	of	the	text	object;

Example

Get	the	number	of	the	bar	where	a	text	object	with	ID	=	1	is	placed:

Text_GetBarNumber(1);

856

Text_GetBGColor

Returns	an	RGB	color	number	or	a	legacy	color	value	that	correspond	to	the
background	color	of	a	text	object	with	the	specified	ID	number;	returns	a	value	of
-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_GetBGColor(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	an	RGB	color	number,	corresponding	to	the	background	color	of	the	text
object	with	an	ID	number	of	3,	to	Value1	variable:

Value1=Text_GetBGColor(3);

Assign	a	legacy	color	value,	corresponding	to	the	background	color	of	the	text
object	with	an	ID	number	of	3,	to	Value1	variable:

[LegacyColorValue=True];
Value1=Text_GetBGColor(3);

857

Text_GetBorder

Returns	a	logical	value,	indicating	whether	a	border	is	added	to	a	text	object	with
the	specified	ID	number;	returns	a	value	of	True	if	the	border	has	been	added,	and	a
value	of	False	if	the	border	has	not	been	added	or	if	the	specified	object	ID
number	is	invalid.

Usage

Text_GetBorder(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	a	true/false	value,	indicating	whether	a	border	is	added	to	the	text	object
with	an	ID	number	of	3,	to	Border	variable:

Variable:Border(False);	
Border=Text_GetBorder(3);

858

Text_GetColor

Returns	an	RGB	color	number	or	a	legacy	color	value	that	correspond	to	the	color
of	the	text	contained	in	a	text	object	with	the	specified	ID	number;	returns	a	value	of
-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_GetColor(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	an	RGB	color	number,	corresponding	to	the	color	of	the	text	object	with	an
ID	number	of	3,	to	Value1	variable:

Value1=Text_GetColor(3);

Assign	a	legacy	color	value,	corresponding	to	the	color	of	the	text	object	with	an
ID	number	of	3,	to	Value1	variable:

[LegacyColorValue=True];
Value1=Text_GetColor(3);

859

Text_GetDate

Returns	a	numerical	value,	indicating	the	date	of	the	bar	at	which	a	text	object	with
the	specified	ID	number	has	been	placed;	returns	a	value	of	-2	if	the	specified
object	ID	number	is	invalid.

The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

Text_GetDate(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	a	value,	indicating	the	date	of	the	bar	at	which	a	text	object	with	the	ID
number	of	3	has	been	placed,	to	Value1	variable:

Value1=Text_GetDate(3);

860

Text_GetFirst

Returns	a	numerical	value,	indicating	an	object	ID	number	of	the	oldest	(the	first	to
be	added	to	the	current	chart)	text	object	of	the	specified	origin;	returns	a	value	of
-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_GetFirst	(Origin)

Parameters

Origin	-	a	numerical	expression	specifying	the	origin	of	the	text	object:

	1	-	added	by	the	current	study
	2	-	added	by	a	study	other	then	the	current	study,	or	drawn	manually	by	the	user
	3	-	added	by	any	study,	or	drawn	manually	by	the	user
	4	-	added	by	the	current	study,	or	drawn	manually	by	the	user
	5	-	added	by	a	study	other	then	the	current	study
	6	-	added	by	any	study
	7	-	added	manually	by	the	user

Notes

If	the	oldest	(the	first	added)	text	object	is	deleted,	the	next	oldest	(the	second
added)	text	object	becomes	the	oldest	(the	first	added)	text	object.

Example

Assign	a	value,	indicating	an	object	ID	number	of	the	oldest	text	object	added	to	the
chart	by	the	current	study,	to	Value1	variable:

Value1=Text_GetFirst(1);

861

Text_GetFontName

Returns	a	string	expression	corresponding	to	the	name	of	the	font	assigned	to	a	text
object	with	the	specified	ID	number.

Usage

Text_GetFontName(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Text_GetFontName(3)		will	return	a	string	expression	corresponding	to	the	name
of	the	font	assigned	to	a	text	object	with	the	ID	number	of	3

862

Text_GetHStyle

Returns	the	horizontal	placement	style	of	a	text	object	with	the	specified	ID	number;
returns	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_GetHStyle(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Return

Horizontal	placement	style:

	0	-	to	the	right	of	the	specified	bar	
	1	-	to	the	left	of	the	specified	bar	
	2	-	centered	on	the	specified	bar

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	a	value,	indicating	the	horizontal	placement	style	of	the	text	object	with	an
ID	number	of	3,	to	Value1	variable:

Value1=Text_GetHStyle(3);

863

Text_GetLock

Locked	text	drawings	cannot	be	moved	manually.	Keyword	returns	a	value	of	True
for	Locked	drawings,	and	a	value	of	False	for	others.

Usage

Text_GetLock(Text_ID)

Where:	Text_ID	-	a	numerical	expression	specifying	the	text	drawing	ID	number

Notes

A	text	ID	number	is	returned	by	Text_New	when	the	text	drawing	is	created.

Example

Assign	Lock	property	of	the	text	drawing	with	an	ID	number	of	3	to	Condition1
variable:

Condition1=Text_GetLock(3);

864

Text_GetNext

Returns	an	ID	number	of	the	first	existing	text	object	added	subsequent	to	a	text
object	with	the	specified	ID	number,	with	both	objects	of	a	specified	origin;	returns
a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_GetNext(ObjectID,Origin)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Origin	-	a	numerical	expression	specifying	the	origin	of	the	text	objects:

	1	-	added	by	the	current	study
	2	-	added	by	a	study	other	then	the	current	study,	or	drawn	manually	by	the	user
	3	-	added	by	any	study,	or	drawn	manually	by	the	user
	4	-	added	by	the	current	study,	or	drawn	manually	by	the	user
	5	-	added	by	a	study	other	then	the	current	study
	6	-	added	by	any	study
	7	-	added	manually	by	the	user

Example

Assign	a	value	to	Value1	variable,	indicating	an	ID	number	of	the	first	existing	text
object	added	subsequent	to	a	text	object	with	the	ID	number	of	3,	with	both	objects
added	by	the	current	study:

Value1=Text_GetNext(3,1);

865

Text_GetSize

Returns	a	numerical	value	indicating	the	font	size	assigned	to	a	text	object	with	the
specified	ID	number;	returns	a	value	of	-2	if	the	specified	object	ID	number	is
invalid.

Usage

Text_GetSize(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	a	value,	indicating	the	font	size	of	the	text	object	with	an	ID	number	of	3,	to
Value1	variable:

Value1=Text_GetSize(3);

866

Text_GetString

Returns	a	string	expression	corresponding	to	the	text	contained	in	a	text	object	with
the	specified	ID	number.

Usage

Text_GetString(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Text_GetString(3)		will	return	a	string	expression	corresponding	to	the	text
contained	in	the	text	object	with	an	ID	number	of	3

867

Text_GetTime

Returns	a	numerical	value,	indicating	the	time	of	the	bar	at	which	a	text	object	with
the	specified	ID	number	has	been	placed;	returns	a	value	of	-2	if	the	specified
object	ID	number	is	invalid.

The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

Text_GetTime(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	a	value,	indicating	the	time	of	the	bar	at	which	a	text	object	with	the	ID
number	of	3	has	been	placed,	to	Value1	variable:

Value1=Text_GetTime(3);

868

Text_GetTime_DT

Returns	a	double-precision	decimal	DateTime	value	indicating	the	time	of	the	bar	at
which	a	text	object	with	the	specified	ID	number	has	been	placed;	returns	a	value	of
-2	if	the	specified	object	ID	number	is	invalid.

The	time	is	indicated	in	the	DateTime	format,	where	the	integer	portion	of	the
DateTime	value	indicates	the	number	of	days	that	have	elapsed	since	January	1st,
1900,	and	the	fractional	portion	of	the	DateTime	value	indicates	the	fraction	of	the
day	that	has	passed	since	midnight.	DateTime	is	a	floating	point	value	with	high
precision.	It	allows	accessing	millisecond	time	stamps	of	the	bar.

Usage

Text_GetTime_DT(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New_Dt	when	the	text	object	is
created.

Example

Assign	a	value,	indicating	the	time	of	the	bar	at	which	a	text	object	with	the	ID
number	of	3	has	been	placed,	to	Value1	variable:

Value1=Text_GetTime_DT(3);

869

Text_GetTime_s

Returns	a	numerical	value	indicating	the	time,	including	seconds,	of	the	bar	at
which	a	text	object	with	the	specified	ID	number	has	been	placed;	returns	a	value	of
-2	if	the	specified	object	ID	number	is	invalid.

The	time	is	indicated	in	the	24-hour	HHmmss	format,	where	130000	=	1:00:00	PM.

Usage

Text_GetTime_s(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New_s	when	the	text	object	is
created.

Example

Assign	a	value,	indicating	the	time	of	the	bar	at	which	a	text	object	with	the	ID
number	of	3	has	been	placed,	to	Value1	variable:

Value1=Text_GetTime_s(3);

870

Text_GetValue

Returns	the	price	value	(vertical	position,	corresponding	to	a	value	on	the	price
scale	of	a	chart),	at	which	a	text	object	with	the	specified	ID	number	has	been
placed;	returns	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_GetValue(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	a	value,	indicating	the	price	value	at	which	a	text	object	with	the	ID	number
of	3	has	been	placed,	to	Value1	variable:

Value1=Text_GetValue(3);

871

Text_GetVStyle

Returns	the	vertical	placement	style	of	a	text	object	with	the	specified	ID	number;
returns	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_GetVStyle(ObjectID)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Return

Vertical	placement	style:

	0	-	below	the	specified	price	value	
	1	-	above	the	specified	price	value	
	2	-	centered	on	the	specified	price	value

Price	value	represents	the	vertical	position	corresponding	to	a	value	on	the	price
scale	of	a	chart.

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	a	value,	indicating	the	vertical	placement	style	of	the	text	object	with	an	ID
number	of	3,	to	Value1	variable:

Value1=Text_GetVStyle(3);

872

Text_Get_Anchor_to_Bars

Returns	the	value	of	the	"anchor	to	bar"	option	of	the	text	drawing	with	a	specified
ID.

Usage

Text_Get_Anchor_to_Bars(Text_ID)

Where:	Text_ID	is	a	numerical	expression	specifying	the	text	drawing	ID	number

Notes

Text	ID	number	is	returned	by	Text_New	when	the	text	drawing	is	created.

Example

Assign	"anchor	to	bars"	option	of	the	text	drawing	with	an	ID	number	of	3	to	the
Condition1	variable:

Condition1=Text_Get_Anchor_to_Bars(3);

873

Text_Lock

Locks	corresponding	text	drawing	so	it	cannot	be	moved	manually;	returns	a	value
of	0	if	the	operation	was	performed	successfully,	and	a	value	of	-2	if	the	specified
trendline	ID	number	is	invalid.

Usage

Text_Lock(Text_ID,LogicalExpression)

Where:	Text_ID	-	a	numerical	expression	specifying	the	text	drawing	ID	number	
													LogicalExpression	-	a	logical	value;	True	=	Add	and	False	=	Remove

Notes

A	text	ID	number	is	returned	by	Text_New	when	the	text	drawing	is	created.

Example

Lock	the	text	drawing	with	an	ID	number	of	3:

Value1=Text_Lock(3,True);

Unlock	the	text	drawing	with	an	ID	number	of	5:

Value1=Text_Lock(5,False);

874

Text_New

Displays	a	text	object,	consisting	of	the	specified	string	expression	located	at	the
specified	bar	and	specified	price	value,	on	the	chart	that	the	study	is	based	on;
returns	an	object-specific	ID	number,	required	to	modify	the	object.

Usage

Text_New	(BarDate,	BarTime,	PriceValue,"Text")

Parameters

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime	-	a	numerical	expression	specifying	the	time	of	the	bar	at	which	the	object
is	to	be	placed;	the	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=
1:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Text	-	the	string	expression	to	be	displayed

Example

Place,	on	the	chart	that	the	study	is	based	on,	the	text	"UpT"	at	the	top	of	a	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Text_New(Date,Time,High,"UpT");

875

Text_New_BN

Displays	a	text	object	consisting	of	the	specified	string	expression	located	at	the
specified	bar	and	specified	price	value	on	the	chart	that	the	study	is	based	on;
returns	an	object-specific	ID	number	required	to	modify	the	object.

Usage

Text_New_BN	(BarNumber,	PriceValue,"Text")

Parameters

BarNumber	-	Numerical	expression	specifying	number	of	the	bar	(horizontal
position).

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	should	be
placed.

Text	-	the	string	expression	to	be	displayed.

Example

On	the	chart	that	the	study	is	based	on	place	the	text	"UpT"	at	the	top	of	the	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Text_New_BN(currentbar,High,"UpT");

876

Text_New_Dt

Displays	a	text	object,	consisting	of	the	specified	string	expression	located	at	the
specified	bar	and	specified	price	value,	on	the	chart	that	the	study	is	based	on;
returns	an	object-specific	ID	number,	required	to	modify	the	object.

Usage

Text_New_Dt	(Bar_DateTime,	PriceValue,"Text")

Parameters

Bar_DateTime	-	Numerical	expression	specifying	date	and	time	of	the	bar
(horizontal	position).	The	integer	portion	of	the	DateTime	value	indicates	the
number	of	days	that	have	elapsed	since	January	1st,	1900,	and	the	fractional	portion
of	the	DateTime	value	indicates	the	fraction	of	the	day	that	has	passed	since
midnight.	DateTime	is	a	floating	point	value	with	high	precision.	It	allows
accessing	millisecond	time	stamps	of	the	bar.

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed.

Text	-	the	string	expression	to	be	displayed

Example

Place,	on	the	chart	that	the	study	is	based	on,	the	text	"UpT"	at	the	top	of	a	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Text_New_Dt(DateTime,High,"UpT");

877

Text_New_s

Displays	a	text	object,	consisting	of	the	specified	string	expression	located	at	the
specified	bar	and	specified	price	value,	on	the	chart	that	the	study	is	based	on;
returns	an	object-specific	ID	number,	required	to	modify	the	object.

Usage

Text_New_s	(BarDate,	BarTime_s,	PriceValue,"Text")

Parameters

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime_s	-	a	numerical	expression	specifying	the	time	of	the	bar,	including
seconds,	at	which	the	object	is	to	be	placed;	the	time	is	indicated	in	the	24-hour
HHmmss	format,	where	130000	=	1:00:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Text	-	the	string	expression	to	be	displayed

Example

Place,	on	the	chart	that	the	study	is	based	on,	the	text	"UpT"	at	the	top	of	a	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Text_New_s(Date,Time_s,High,"UpT");

878

Text_New_self

Displays	a	text	object,	consisting	of	the	specified	string	expression	located	at	the
specified	bar	and	specified	price	value,	on	the	SubChart	containing	the	study;
returns	an	object-specific	ID	number,	required	to	modify	the	object.

Usage

Text_New_self	(BarDate,	BarTime,	PriceValue,"Text")

Parameters

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime	-	a	numerical	expression	specifying	the	time	of	the	bar	at	which	the	object
is	to	be	placed;	the	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=
1:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Text	-	the	string	expression	to	be	displayed

Example

Place,	on	the	SubChart	containing	the	study,	the	text	"UpT"	at	the	points	of	the	plot
where	the	Open	price	has	increased	incrementally	over	the	last	three	bars:

Plot1(Close);
If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Text_New_self(Date,Time,High,"UpT");

879

Text_New_Self_BN
The	same	as	Text_New_BN.	Difference:	Displays	a	text	on	the	SubChart	containing
the	study.

880

Text_New_Self_DT

Displays	a	text	object,	consisting	of	the	specified	string	expression	located	at	the
specified	bar	and	specified	price	value,	on	the	SubChart	containing	the	study;
returns	an	object-specific	ID	number,	required	to	modify	the	object.

Usage

Text_New_Self_DT	(Bar_DateTime,	PriceValue,"Text")

Parameters

Bar_DateTime	-	Numerical	expression	specifying	date	and	time	of	the	bar
(horizontal	position).	The	integer	portion	of	the	DateTime	value	indicates	the
number	of	days	that	have	elapsed	since	January	1st,	1900,	and	the	fractional	portion
of	the	DateTime	value	indicates	the	fraction	of	the	day	that	has	passed	since
midnight.	DateTime	is	a	floating	point	value	with	high	precision.	It	allows
accessing	millisecond	time	stamps	of	the	bar.

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed.

Text	-	the	string	expression	to	be	displayed

Example

Place,	on	the	chart	that	the	study	is	based	on,	the	text	"UpT"	at	the	top	of	a	bar	if	the
Open	price	has	increased	incrementally	over	the	last	three	bars:

If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Text_New_Self_DT(DateTime,High,"UpT");

881

Text_New_self_s

Displays	a	text	object,	consisting	of	the	specified	string	expression	located	at	the
specified	bar	and	specified	price	value,	on	the	SubChart	containing	the	study;
returns	an	object-specific	ID	number,	required	to	modify	the	object.

Usage

Text_New_self_s	(BarDate,	BarTime_s,	PriceValue,"Text")

Parameters

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime_s	-	a	numerical	expression	specifying	the	time	of	the	bar,	including
seconds,	at	which	the	object	is	to	be	placed;	the	time	is	indicated	in	the	24-hour
HHmmss	format,	where	130000	=	1:00:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Text	-	the	string	expression	to	be	displayed

Example

Place,	on	the	SubChart	containing	the	study,	the	text	"UpT"	at	the	points	of	the	plot
where	the	Open	price	has	increased	incrementally	over	the	last	three	bars:

Plot1(Close);
If	Open>Open[1]	And	Open[1]>Open[2]	Then
Value1=Text_New_self_s(Date,Time_s,High,"UpT");

882

Text_SetAttribute

Sets	an	attribute	of	the	text	in	a	text	object	with	the	specified	ID	number;	returns	a
value	of	0	if	the	attribute	was	successfully	set,	and	a	value	of	-2	if	the	specified
object	ID	number	is	invalid.

The	following	text	attributes	can	be	set:	border,	bold,	italic,	strike-out,	and
underline.

Usage

Text_SetAttribute(ObjectID,Attribute,LogicalExpression)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

Attribute	-	a	numerical	expression	specifying	the	attribute:

	0	-	border
	1	-	bold
	2	-	italic
	3	-	strike-out
	4	-	underline

LogicalExpression	-	a	logical	value;	True	=	on	and	False	=	off

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Set	the	attribute	"bold"	to	on	for	the	text	in	a	text	object	with	the	ID	number	of	3:

883

Value1=Text_SetAttribute(3,1,True);

884

Text_SetBarNumber

Assigns	the	specified	barnumber	to	the	text	object	with	the	specified	ID	number;
returns	a	value	of	0	if	the	barnumber	was	successfully	assigned,	and	a	value	of	-2	if
the	specified	object	ID	number	is	invalid.

Usage

Text_SetBarNumber(ref,Barnumber)

Parameters:

ref	-	ID	number	of	the	text	object;
Barnumber	-	the	new	bar	number	that	is	to	be	assigned	to	the	specified	object.

Example

Assign	the	new	barnumber	value	of	100	to	the	text	object	with	ID	=	1:

Text_SetBarNumber(1,	100);

885

Text_SetBGColor

Assigns	the	specified	background	color	to	a	text	object	with	the	specified	ID
number;	returns	a	value	of	0	if	the	color	was	successfully	assigned,	and	a	value	of
-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_SetBGColor(ObjectID,BGColor)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

BGColor	-	an	expression	specifying	the	background	color

The	color	can	be	specified	by	a	numerical	expression	representing	an	RGB	color
number	or	a	legacy	color	value,	or	by	one	of	17	base	color	words.

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	the	color	blue	to	the	background	of	a	text	object	with	the	ID	number	of	3:

Value1=Text_SetBGColor(3,Blue);

Assign	the	RGB	color	2138336	(Orange)	to	the	background	of	a	text	object	with	the
ID	number	of	3:

Value1=Text_SetBGColor(3,2138336);

Assign	the	legacy	color	4	(Green)	to	the	background	of	a	text	object	with	the	ID

886

number	of	3:

[LegacyColorValue=True];
Value1=Text_SetBGColor(3,4);

887

Text_SetBorder

Adds	or	removes	a	border	around	the	text	object	with	the	specified	ID	number;
returns	a	value	of	0	if	the	border	was	successfully	set,	and	a	value	of	-2	if	the
specified	object	ID	number	is	invalid.

The	color	of	the	border	is	the	same	as	the	color	of	the	text	in	the	text	object.

Usage

Text_SetBorder(ObjectID,LogicalExpression)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number	
													LogicalExpression	-	a	logical	value;	True	=	Add	and	False	=	Remove

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Add	a	border	to	the	text	object	with	an	ID	number	of	3:

Value1=Text_SetBorder(3,True);

Remove	a	border	from	the	text	object	with	an	ID	number	of	3:

Value1=Text_SetBorder(3,False);

888

Text_SetColor

Assigns	the	specified	color	to	the	text	of	a	text	object	with	the	specified	ID	number;
returns	a	value	of	0	if	the	color	was	successfully	assigned,	and	a	value	of	-2	if	the
specified	object	ID	number	is	invalid.

Usage

Text_SetColor(ObjectID,TextColor)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

TextColor	-	an	expression	specifying	the	text	color

The	color	can	be	specified	by	a	numerical	expression	representing	an	RGB	color
number	or	a	legacy	color	value,	or	by	one	of	17	base	color	words.

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	the	color	blue	to	the	text	of	a	text	object	with	the	ID	number	of	3:

Value1=Text_SetColor(3,Blue);

Assign	the	RGB	color	2138336	(Orange)	to	the	text	of	a	text	object	with	the	ID
number	of	3:

Value1=Text_SetColor(3,2138336);

Assign	the	legacy	color	4	(Green)	to	the	text	of	a	text	object	with	the	ID	number	of

889

3:

[LegacyColorValue=True];
Value1=Text_SetColor(3,4);

890

Text_SetFontName

Assigns	the	specified	font	to	a	text	object	with	the	specified	ID	number;	returns	a
value	of	-2	if	the	specified	object	ID	number	is	invalid.

Any	font	in	the	Fonts	folder	can	be	used;	the	folder	is	accessible	from	the	Control
Panel	in	Windows	XP	operating	system.

Usage

Text_SetFontName(ObjectID,"FontName")

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number	
													FontName	-	a	string	expression	specifying	the	font	name

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	font	Verdana	to	the	text	object	with	the	ID	number	of	3:

Value1=Text_SetFontName(3,"Verdana");

891

Text_SetLocation

Modifies	the	location	of	a	text	object	with	the	specified	ID	number;	returns	a	value
of	0	if	the	location	of	the	object	was	successfully	modified,	and	a	value	of	-2	if	the
specified	object	ID	number	is	invalid.

Usage

Text_SetLocation	(ObjectID,	BarDate,	BarTime,	PriceValue)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime	-	a	numerical	expression	specifying	the	time	of	the	bar	at	which	the	object
is	to	be	placed;	the	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=
1:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Move	the	text	object	with	an	ID	number	of	3	to	the	top	of	the	current	bar:

Value1=Text_SetLocation(3,Date,Time,High);

892

893

Text_SetLocation_BN

Modifies	location	of	a	text	object	with	the	specified	ID	number;	returns	a	value	of	0
if	location	of	the	object	was	successfully	modified,	and	a	value	of	-2	if	the	specified
object	ID	number	is	invalid.

Usage

Text_SetLocation_BN	(ObjectID,	BarNumber,	PriceValue)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number.

BarNumber	-	a	numerical	expression	specifying	the	bar	number	at	which	the	object
is	to	be	placed.

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	should	be
placed.

Notes

An	object-specific	ID	number	is	returned	by	Text_New_Dt	when	the	text	object	is
created.

Example

Move	the	text	object	with	an	ID	number	of	3	to	the	top	of	the	current	bar:

Value1=Text_SetLocation_BN(3,currentbar,High);

894

Text_SetLocation_DT

Modifies	the	location	of	a	text	object	with	the	specified	ID	number;	returns	a	value
of	0	if	the	location	of	the	object	was	successfully	modified,	and	a	value	of	-2	if	the
specified	object	ID	number	is	invalid.

Usage

Text_SetLocation_DT	(ObjectID,	Bar_DateTime,	PriceValue)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number.

Bar_DateTime	-	a	numerical	expression	specifying	the	date	and	time	of	the	bar	at
which	the	object	is	to	be	placed;	the	date	is	indicated	in	the	DateTime	format,	where
the	integer	portion	of	the	DateTime	value	indicates	the	number	of	days	that	have
elapsed	since	January	1st,	1900,	and	the	fractional	portion	of	the	DateTime	value
indicates	the	fraction	of	the	day	that	has	passed	since	midnight.	DateTime	is	a
floating	point	value	with	high	precision.	It	allows	accessing	millisecond	time
stamps	of	the	bar.

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed.

Notes

An	object-specific	ID	number	is	returned	by	Text_New_Dt	when	the	text	object	is
created.

Example

Move	the	text	object	with	an	ID	number	of	3	to	the	top	of	the	current	bar:

Value1=Text_SetLocation_DT(3,DateTime,High);

895

896

Text_SetLocation_s

Modifies	the	location	of	a	text	object	with	the	specified	ID	number;	returns	a	value
of	0	if	the	location	of	the	object	was	successfully	modified,	and	a	value	of	-2	if	the
specified	object	ID	number	is	invalid.

Usage

Text_SetLocation_s	(ObjectID,	BarDate,	BarTime_s,	PriceValue)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number

BarDate	-	a	numerical	expression	specifying	the	date	of	the	bar	at	which	the	object
is	to	be	placed;	the	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the
number	of	years	since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

BarTime_s	-	a	numerical	expression	specifying	the	time	of	the	bar,	including
seconds,	at	which	the	object	is	to	be	placed;	the	time	is	indicated	in	the	24-hour
HHmmss	format,	where	130000	=	1:00:00	PM

PriceValue	-	a	numerical	expression	specifying	the	price	value	(vertical	position,
corresponding	to	a	value	on	the	price	scale	of	a	chart),	where	the	object	is	to	be
placed

Notes

An	object-specific	ID	number	is	returned	by	Text_New_s	when	the	text	object	is
created.

Example

Move	the	text	object	with	an	ID	number	of	3	to	the	top	of	the	current	bar:

Value1=Text_SetLocation_s(3,Date,Time_s,High);

897

898

Text_SetSize

Assigns	the	specified	font	size	to	the	text	of	a	text	object	with	the	specified	ID
number;	returns	a	value	of	0	if	the	font	size	was	successfully	assigned,	and	a	value
of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_SetSize(ObjectID,FontSize)

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number	
													FontSize	-	a	numerical	expression	specifying	the	font	size

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Assign	the	font	size	of	16	to	the	text	of	a	text	object	with	the	ID	number	of	3:

Value1=Text_SetSize(3,16);

899

Text_SetString

Replaces	with	the	specified	string	expression	the	text	contained	in	a	text	object	with
the	specified	ID	number;	returns	a	value	of	0	if	the	string	expression	was
successfully	replaced,	and	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_SetString(ObjectID,"Text")

Where:	ObjectID	-	a	numerical	expression	specifying	the	object	ID	number	
													Text	-	the	new	string	expression	to	be	displayed	in	the	text	object

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

Example

Replace	the	text,	contained	in	a	text	object	with	the	ID	number	of	3,	with	the	string
expression	"New	Text":

Value1=Text_SetString(3,"New	Text");

900

Text_SetStyle

Sets	the	placement	style	of	a	text	object	relative	to	the	bar	and	to	the	price	value
specified	for	the	object;	returns	a	value	of	0	if	the	placement	style	of	the	object	was
successfully	modified,	and	a	value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

Text_SetStyle	(ObjectID,	HorizPl,	VertPl)

Parameters

ObjectID	-	a	numerical	expression	specifying	the	object	ID	number	

HorizPl	-	a	numerical	expression	specifying	the	horizontal	placement	style	for	the
text	object:

	0	-	to	the	right	of	the	specified	bar
	1	-	to	the	left	of	the	specified	bar
	2	-	centered	on	the	specified	bar	

VertPl	-	a	numerical	expression	specifying	the	vertical	placement	style	for	the	text
object:

	0	-	below	the	specified	price	value
	1	-	above	the	specified	price	value
	2	-	centered	on	the	specified	price	value

Price	value	represents	the	vertical	position	corresponding	to	a	value	on	the	price
scale	of	a	chart.

Notes

An	object-specific	ID	number	is	returned	by	Text_New	when	the	text	object	is
created.

901

Example

Center	the	text	object	with	an	ID	number	of	3	on	the	bar	and	on	the	price	value,
specified	for	the	object:

Value1=Text_SetStyle(3,2,2);

902

DoubleQuote

Displays	the	double-quote	(")	character	in	a	string.

Example

This	example	demonstrates	how	the	word	Hello	in	double	quotes	can	be	displayed
on	the	last	bar	above	High:

Variable:	ID(-1);
If	LastBarOnChart	Then	
ID	=	Text_New(Date,	Time,	High	+	1	Point,	DoubleQuote	+	"Hello"	+
DoubleQuote);

903

InStr

Returns	the	position	of	a	specified	string	expression	inside	another	specified	string
expression.

The	position	of	the	string	being	located	is	indicated	by	the	number	of	characters
from	the	left	side	of	the	string	being	evaluated.

Usage

InStr(String1,String2)

Where:	String1		-	a	string	to	be	evaluated
													String2		-	a	string	to	be	located

Notes

In	case	the	search	returns	no	results	0	is	returned

In	case	if	the	sought	word	occurs	more	than	once,	the	first	position	will	be	returned

Search	is	case	sensetive

Example

InStr("Friday	is	the	expiration	day",	"Friday");

will	return	a	value	of	1,	indicating	that	the	string	"Friday"	begins	at	position	1	of
the	String	"Friday	is	the	expiration	day"	

InStr("Friday	is	the	expiration	day",	"Monday");

will	return	a	value	of	0,	indicating	that	the	string	"Monday"	does	not	exist	in	the
String	"Friday	is	the	expiration	day"

904

LeftStr

Returns	one	or	more	leftmost	characters	from	the	specified	string	expression.

Usage

LeftStr(String,sSize)

Where:	String		-	a	string	expression	from	which	the	characters	are	to	be	taken
													sSize		-	a	numerical	expression	specifying	the	number	of	characters	to	be
returned

Example

LeftStr("Hello	World",5);		will	return	a	string	expression	"Hello"

905

LowerStr

Converts	the	uppercase	letters	of	a	specified	string	expression	to	a	lowercase.

Usage

LowerStr("String")

Where:	String		-	a	string	expression	to	be	converted

Example

LowerStr("Return	on	Account");		will	return	a	string	expression	"return	on
account"

906

MidStr

Returns	a	part,	starting	from	a	specified	position	and	of	a	specified	length,	of	a
specified	string	expression.

Usage

MidStr("String",Pos,Num)

Where:	String	-	a	string	expression	the	specified	part	is	to	be	taken	from	
													Pos	-	a	numerical	expression	specifying	the	position,	from	the	left	side	of
the	string,	of	the	starting	character	of	the	part	
													Num	-	a	numerical	expression	specifying	the	length,	in	characters,	of	the
part

Example

MidStr("Largest	winning	trade",1,7);		will	return	a	string	expression	"Largest"

907

NewLine

Starts	a	new	line	and	returns	carriage.

Notes

Use	the	"+"	character	to	add	NewLine	to	a	string	expression.

Example

FileAppend("c:\testfile.txt","We	can	see	a	new	bar	for"+
NumToStr(Date,0)+	NewLine);

908

NumToStr

Returns	a	specified	numerical	expression	in	the	form	of	a	string	expression.

Usage

NumToStr(Expression,Dec)

Where:	Expression		-	a	numerical	expression	to	be	converted	to	a	string
expression
													Dec		-	a	numerical	expression	specifying	the	number	of	decimal	places	the
returned	string	expression	is	to	contain

Example

NumToStr(1500.5,3);			will	return	a	string	expression	"1500.500"

909

RightStr

Returns	one	or	more	rightmost	characters	from	the	specified	string	expression.

Usage

RightStr(String,sSize)

Where:	String		-	a	string	expression	from	which	the	characters	are	to	be	taken
													sSize		-	a	numerical	expression	specifying	the	number	of	characters	to	be
returned

Example

RightStr("Hello	World",5);		will	return	a	string	expression	"World"

910

Spaces

Returns	a	string	expression	consisting	of	a	specified	number	of	spaces.

Usage

Spaces(Num)

Where:	Num		-	a	numerical	expression	specifying	the	number	of	spaces

Example

The	example	inserts	two	blank	spaces	between	the	letters	"a"	and	"b":

Print("a"+Spaces(2)+"b");

911

StrLen

Returns	the	length,	in	characters,	of	a	specified	string	expression.

Usage

StrLen("String")

Where:	String		-	a	string	expression	to	be	evaluated

Example

StrLen("Drawdown");		will	return	a	value	of	8

912

StrToNum

Converts	a	specified	string	expression	to	a	numerical	value.

Usage

StrToNum("String")

Where:	String		-	a	string	expression	to	be	converted

Notes

If	non-numeric	characters	are	encountered	the	rest	of	the	expression	is	ignored.

Example

StrToNum("2500.70");			will	return	a	value	of	2500.70

913

Text

Returns	the	string,	formed	up	by	the	transferred	arguments.

Usage

Text(Param1,	Param2,	...,	ParamN);

Where:	Param(i)	is	string	expression,	numeric	expression	or	True/False	value.

Example

Text_new(D,T,C,Text("Bar	Date/Time	is	",Date:0:0,"/",Time:0:0));

914

UpperStr

Converts	the	lowercase	letters	of	a	specified	string	expression	to	uppercase.

Usage

UpperStr("String")

Where:	String		-	a	string	expression	to	be	converted

Example

UpperStr("msft");		will	return	a	string	expression	"MSFT"

915

MC_TL_GetActive
Returns	a	numerical	value	indicating	the	trendline	ID	number	of	the	currently
selected	trendline;	returns	a	value	of	-1	if	no	trendlines	are	currently	selected.

Usage

MC_TL_GetActive

Notes

A	trendline-specific	ID	number	is	assigned	by	MC_TL_New	when	the	trendline	is
created.

Example

Assign	a	value,	indicating	the	trendline	ID	number	of	the	currently	selected
trendline,	to	Value1	variable:

Value1	=	MC_TL_GetActive;

916

MC_TL_New
The	same	as	TL_New.

917

MC_TL_New_BN
The	same	as	TL_New_BN.

918

MC_TL_New_DT
The	same	as	TL_New_DT.

919

MC_TL_New_Self
The	same	as	TL_New_Self.

920

MC_TL_New_Self_BN
The	same	as	TL_New_Self_BN.

921

MC_TL_New_Self_DT
The	same	as	TL_New_Self_DT.

922

TL_Anchor_to_Bars

Anchors	the	corresponding	trendline	drawing	to	the	visible	bar	index;	returns	a
value	of	0	if	the	operation	was	performed	successfully,	and	a	value	of	-2	if	the
specified	trendline	ID	number	is	invalid.

Usage

TL_Anchor_to_Bars(TL_ID,LogicalExpression)

Where:	TL_ID	is	a	numerical	expression	specifying	the	trendline	ID	number	
													LogicalExpression	is	a	logical	value;	True	=	Add	option	and	False	=
Remove	option

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Anchor	the	trendline	with	an	ID	number	of	3	to	the	visible	bar	index:

Value1=TL_Anchor_to_Bars(3,True);

923

TL_Delete

Removes	a	trendline	with	the	specified	ID	number	from	a	chart;	returns	a	value	of	0
if	the	trendline	was	successfully	removed,	and	a	value	of	-2	if	the	specified
trendline	ID	number	is	invalid.

Usage

TL_Delete(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Remove	the	trendline	with	an	ID	number	of	3:

Value1=TL_Delete(3);

924

TL_GetActive

This	reserved	word	returns	a	numeric	value	representing	the	ID	of	the	currently
active	trendline.

Usage

TL_GetActive

Notes

When	the	reserved	word	performs	its	operation	successfully,	trendline	ID	is
returned.

When	a	reserved	word	cannot	perform	its	operation,	it	returns	an	error	code.

Example

Value1=TL_GetActive;

Assigns	the	ID	of	the	currently	active	trendline	to	Value1.

Value1	is	any	numeric	variable	or	array.

Trendline	reserved	word	should	be	assigned	to	a	numeric	variable	or	array	in
order	to	determine	whether	the	reserved	word	performed	its	operation	successfully
or	not.

925

TL_GetAlert

Returns	the	alert	status	for	a	trendline	with	the	specified	ID	number;	returns	a	value
of	-2	if	the	specified	trendline	ID	number	is	invalid.

Usage

TL_GetAlert(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Return

Alert	status:

	0	-	Alert	disabled

	1	-	Breakout	intra-bar

An	alert	is	triggered	if	the	High	crosses	over	the	trendline	or	the	Low	crosses
under	the	trendline.	Alert	triggering	conditions	are	evaluated	intra-bar.

	2	-	Breakout	on	close

An	alert	is	triggered	if	the	Close	of	the	previous	bar	was	below	the	trendline	and
the	Close	of	the	current	bar	is	above	the	trendline,	or	if	the	Close	of	the	previous
bar	was	above	the	trendline	and	the	Close	of	the	current	bar	is	below	the	trendline.
Alert	triggering	conditions	are	evaluated	at	Close	of	a	bar.

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	value,	indicating	the	alert	status	for	a	trendline	with	the	ID	number	of	3,	to
Value1	variable:

926

Value1=TL_GetAlert(3);

927

TL_GetBeginDate

Returns	a	numerical	value,	indicating	the	date	of	the	starting	point	of	a	trendline
with	the	specified	ID	number;	returns	a	value	of	-2	if	the	specified	trendline	ID
number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	earlier	date	and	time	is
always	considered	to	be	the	starting	point;	if	the	trendline	is	vertical,	the	point	with
the	lower	price	value	is	considered	to	be	the	starting	point.

The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

TL_GetBeginDate(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	value,	indicating	the	date	of	the	starting	point	of	a	trendline	with	the	ID
number	of	3,	to	Value1	variable:

Value1=TL_GetBeginDate(3);

928

TL_GetBeginTime

Returns	a	numerical	value,	indicating	the	time	of	the	starting	point	of	a	trendline
with	the	specified	ID	number;	returns	a	value	of	-2	if	the	specified	trendline	ID
number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	earlier	date	and	time	is
always	considered	to	be	the	starting	point;	if	the	trendline	is	vertical,	the	point	with
the	lower	price	value	is	considered	to	be	the	starting	point.

The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

TL_GetBeginTime(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	value,	indicating	the	time	of	the	starting	point	of	a	trendline	with	the	ID
number	of	3,	to	Value1	variable:

Value1=TL_GetBeginTime(3);

929

TL_GetBeginTime_s

Returns	a	numerical	value	indicating	the	time,	including	seconds,	of	the	starting
point	of	a	trendline	with	the	specified	ID	number;	returns	a	value	of	-2	if	the
specified	trendline	ID	number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	earlier	date	and	time	is
always	considered	to	be	the	starting	point;	if	the	trendline	is	vertical,	the	point	with
the	lower	price	value	is	considered	to	be	the	starting	point.

The	time	is	indicated	in	the	24-hour	HHmmss	format,	where	130000	=	1:00:00	PM.

Usage

TL_GetBeginTime_s(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New_s	when	the	trendline	is
created.

Example

Assign	a	value,	indicating	the	time	of	the	starting	point	of	a	trendline	with	the	ID
number	of	3,	to	Value1	variable:

Value1=TL_GetBeginTime_s(3);

930

TL_GetBeginVal

Returns	the	price	value	(vertical	position,	corresponding	to	a	value	on	the	price
scale	of	a	chart)	of	the	starting	point	of	a	trendline	with	the	specified	ID	number;
returns	a	value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	earlier	date	and	time	is
always	considered	to	be	the	starting	point;	if	the	trendline	is	vertical,	the	point	with
the	lower	price	value	is	considered	to	be	the	starting	point.

Usage

TL_GetBeginVal(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	value,	indicating	the	price	value	of	the	starting	point	of	a	trendline	with
the	ID	number	of	3,	to	Value1	variable:

Value1=TL_GetBeginVal(3);

931

TL_GetBegin_BN

Returns	a	bar	number	value	of	the	starting	point	of	a	trend	line	with	the	specified	ID
number;	returns	a	value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Usage

TL_GetBegin_BN(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

TL_GetBegin_BN(value1);	will	return	5	if	Trend	Line	with	ID	=	Value1	starts	on
fifth	bar	of	price	series.

932

TL_GetBegin_Dt

Returns	a	DateTime	value,	indicating	the	date	and	time	of	the	starting	point	of	a
trend	line	with	the	specified	ID	number;	returns	a	value	of	-2	if	the	specified
trendline	ID	number	is	invalid.

Usage

TL_GetBegin_Dt(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New_Dt	when	the	trendline	is
created.

Example

TL_GetBegin_Dt(value1);	will	return	41422.752623935186	if	Trend	Line	with	ID	=
Value1	starts	at	08:30:00.722	on	5/28/2013

933

TL_GetColor

Returns	an	RGB	color	number	or	a	legacy	color	value	that	correspond	to	the	color
of	a	trendline	with	the	specified	ID	number;	returns	a	value	of	-2	if	the	specified
trendline	ID	number	is	invalid.

Usage

TL_GetColor(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	an	RGB	color	number,	corresponding	to	the	color	of	a	trendline	with	the	ID
number	of	3,	to	Value1	variable:

Value1=TL_GetColor(3);

Assign	a	legacy	color	value,	corresponding	to	the	color	of	a	trendline	with	the	ID
number	of	3,	to	Value1	variable:

[LegacyColorValue=True];
Value1=TL_GetColor(3);

934

TL_GetEndDate

Returns	a	numerical	value,	indicating	the	date	of	the	ending	point	of	a	trendline
with	the	specified	ID	number;	returns	a	value	of	-2	if	the	specified	trendline	ID
number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	later	date	and	time	is	always
considered	to	be	the	ending	point;	if	the	trendline	is	vertical,	the	point	with	the
higher	price	value	is	considered	to	be	the	ending	point.

The	date	is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years
since	1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month.

Usage

TL_GetEndDate(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	value,	indicating	the	date	of	the	ending	point	of	a	trendline	with	the	ID
number	of	3,	to	Value1	variable:

Value1=TL_GetEndDate(3);

935

TL_GetEndTime

Returns	a	numerical	value,	indicating	the	time	of	the	ending	point	of	a	trendline
with	the	specified	ID	number;	returns	a	value	of	-2	if	the	specified	trendline	ID
number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	later	date	and	time	is	always
considered	to	be	the	ending	point;	if	the	trendline	is	vertical,	the	point	with	the
higher	price	value	is	considered	to	be	the	ending	point.

The	time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM.

Usage

TL_GetEndTime(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	value,	indicating	the	time	of	the	ending	point	of	a	trendline	with	the	ID
number	of	3,	to	Value1	variable:

Value1=TL_GetEndTime(3);

936

TL_GetEndTime_s

Returns	a	numerical	value	indicating	the	time,	including	seconds,	of	the	ending
point	of	a	trendline	with	the	specified	ID	number;	returns	a	value	of	-2	if	the
specified	trendline	ID	number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	later	date	and	time	is	always
considered	to	be	the	ending	point;	if	the	trendline	is	vertical,	the	point	with	the
higher	price	value	is	considered	to	be	the	ending	point.

The	time	is	indicated	in	the	24-hour	HHmmss	format,	where	130000	=	1:00:00	PM.

Usage

TL_GetEndTime_s(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New_s	when	the	trendline	is
created.

Example

Assign	a	value,	indicating	the	time	of	the	ending	point	of	a	trendline	with	the	ID
number	of	3,	to	Value1	variable:

Value1=TL_GetEndTime_s(3);

937

TL_GetEndVal

Returns	the	price	value	(vertical	position,	corresponding	to	a	value	on	the	price
scale	of	a	chart)	of	the	ending	point	of	a	trendline	with	the	specified	ID	number;
returns	a	value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	later	date	and	time	is	always
considered	to	be	the	ending	point;	if	the	trendline	is	vertical,	the	point	with	the
higher	price	value	is	considered	to	be	the	ending	point.

Usage

TL_GetEndVal(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	value,	indicating	the	price	value	of	the	ending	point	of	a	trendline	with	the
ID	number	of	3,	to	Value1	variable:

Value1=TL_GetEndVal(3);

938

TL_GetEnd_BN

Returns	a	bar	number	value	of	the	ending	point	of	a	trend	line	with	the	specified	ID
number;	returns	a	value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Usage

TL_GetEnd_BN(TL_ID)

Where:	TL_ID	-	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

TL_GetEnd_BN(value1);	will	return	8	if	Trend	Line	with	ID	=	Value1	ends	on
eighth	bar	of	price	series.

939

TL_GetEnd_Dt

Returns	a	DateTime	value,	indicating	the	date	and	time	of	the	ending	point	of	a
trend	line	with	the	specified	ID	number;	returns	a	value	of	-2	if	the	specified
trendline	ID	number	is	invalid.

Usage

TL_GetEnd_Dt(TL_ID)

Where:	TL_ID	-	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New_Dt	when	the	trendline	is
created.

Example

TL_GetEnd_Dt(value1);	will	return	41422.752623935186	if	Trend	Line	with	ID	=
Value1	ends	at	08:30:00.722	on	5/28/2013

940

TL_GetExtLeft

Returns	a	logical	value,	indicating	whether	the	trendline	with	the	specified	ID
number	is	extended	to	the	left;	returns	a	value	of	True	if	the	trendline	is	extended,
and	a	value	of	False	if	the	trendline	is	not	extended	or	if	the	specified	trendline	ID
number	is	invalid.

Usage

TL_GetExtLeft(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	true/false	value,	indicating	whether	the	trendline	with	an	ID	number	of	3	is
extended	to	the	left,	to	ExtL	variable:

Variable:ExtL(False);	
ExtL=TL_GetExtLeft(3);

941

TL_GetExtRight

Returns	a	logical	value,	indicating	whether	the	trendline	with	the	specified	ID
number	is	extended	to	the	right;	returns	a	value	of	True	if	the	trendline	is	extended,
and	a	value	of	False	if	the	trendline	is	not	extended	or	if	the	specified	trendline	ID
number	is	invalid.

Usage

TL_GetExtRight(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	true/false	value,	indicating	whether	the	trendline	with	an	ID	number	of	3	is
extended	to	the	right,	to	ExtR	variable:

Variable:ExtR(False);	
ExtR=TL_GetExtRight(3);

942

TL_GetFirst

Returns	a	numerical	value,	indicating	the	trendline	ID	number	of	the	oldest	(the
first	to	be	drawn	on	the	current	chart)	trendline	of	the	specified	origin;	returns	a
value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Usage

TL_GetFirst	(Origin)

Parameters

Origin	-	a	numerical	expression	specifying	the	origin	of	the	trendline:

	1	-	drawn	by	the	current	study
	2	-	drawn	by	a	study	other	then	the	current	study,	or	drawn	manually	by	the	user
	3	-	drawn	by	any	study,	or	drawn	manually	by	the	user
	4	-	drawn	by	the	current	study,	or	drawn	manually	by	the	user
	5	-	drawn	by	a	study	other	then	the	current	study
	6	-	drawn	by	any	study
	7	-	drawn	manually	by	the	user

Notes

If	the	oldest	(the	first	to	be	drawn)	trendline	is	deleted,	the	next	oldest	(the	second	to
be	drawn)	trendline	becomes	the	oldest	(the	first	drawn)	trendline.

Example

Assign	a	value,	indicating	the	trendline	ID	number	of	the	oldest	trendline	drawn	on
the	chart	by	the	current	study,	to	Value1	variable:

Value1=TL_GetFirst(1);

943

TL_GetLock

Locked	trendline	drawings	cannot	be	moved	manually.	Keyword	returns	a	value	of
True	for	locked	drawings,	and	a	value	of	False	for	unlocked.

Usage

TL_GetLock(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	Lock	property	of	the	trendline	drawing	with	an	ID	number	of	3	to
Condition1	variable:

Condition1=TL_GetLock(3);

944

TL_GetNext

Returns	an	ID	number	of	the	first	existing	trendline	drawn	subsequent	to	a	trendline
with	the	specified	ID	number,	with	both	trendlines	of	a	specified	origin;	returns	a
value	of	-2	if	the	specified	object	ID	number	is	invalid.

Usage

TL_GetNext	(TL_ID,Origin)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Origin	-	a	numerical	expression	specifying	the	origin	of	the	trendlines:

	1	-	drawn	by	the	current	study
	2	-	drawn	by	a	study	other	then	the	current	study,	or	drawn	manually	by	the	user
	3	-	drawn	by	any	study,	or	drawn	manually	by	the	user
	4	-	drawn	by	the	current	study,	or	drawn	manually	by	the	user
	5	-	drawn	by	a	study	other	then	the	current	study
	6	-	drawn	by	any	study
	7	-	drawn	manually	by	the	user

Example

Assign	a	value	to	Value1	variable,	indicating	the	ID	number	of	the	first	existing
trendline	drawn	subsequent	to	a	trendline	with	the	ID	number	of	3,	with	both
trendlines	drawn	by	the	current	study:

Value1=TL_GetNext(3,1);

945

TL_GetSize

Returns	a	numerical	value	indicating	the	width	of	a	trendline	with	the	specified	ID
number;	returns	a	value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Usage

TL_GetSize(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	value,	indicating	the	width	of	a	trendline	with	the	ID	number	of	3,	to
Value1	variable:

Value1=TL_GetSize(3);

946

TL_GetStyle

Returns	a	numerical	value,	indicating	the	style	of	a	trendline	with	the	specified	ID
number;	returns	a	value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Usage

TL_GetStyle(TL_ID)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Return

Trendline	styles:

1 Tool	Solid ______________________
2 Tool	Dashed -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3 Tool	Dotted ..
4 Tool	Dashed2 __	_	__	_	__	_	__	_	__	_	__
5 Tool	Dashed3	 ___	_	_	___	_	_	___	_	_	___

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	a	value,	indicating	the	style	of	a	trendline	with	the	ID	number	of	3,	to	Value1
variable:

Value1=TL_GetStyle(3);

947

TL_GetValue

Returns	a	price	value,	at	the	specified	date	and	time,	of	a	trendline	with	the	specified
ID	number;	returns	a	value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

If	the	trendline	does	not	extend	to	the	specified	date	and	time,	a	price	value	along
the	same	slope	as	the	trendline	will	be	returned.

Usage

TL_GetValue	(TL_ID,	Date,	Time)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Date	-	a	numerical	expression	specifying	the	date;	the	date	is	indicated	in	the
YYYMMdd	format,	where	YYY	is	the	number	of	years	since	1900,	MM	is	the
month,	and	dd	is	the	day	of	the	month

Time	-	a	numerical	expression	specifying	the	time;	the	time	is	indicated	in	the	24-
hour	HHmm	format,	where	1300	=	1:00	PM

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	the	price	value,	at	10:00	AM	on	January	17th,	of	a	trendline	with	the	ID
number	of	3,	to	Value1	variable:

Value1=TL_GetValue(3,1080117,1000);

948

TL_GetValue_BN

Returns	a	price	value,	at	the	specified	bar	number,	of	a	trendline	with	the	specified
ID	number;	returns	a	value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

If	the	trendline	does	not	extend	to	the	specified	bar,	a	price	value	along	the	same
slope	as	the	trendline	will	be	returned.

Usage

TL_GetValue_BN(TL_ID,	Barnumber)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number;

Barnumber	-	a	numerical	expression	specifying	a	number	of	a	bar;

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	the	price	value	at	bar	number	100	of	a	trendline	with	the	ID	number	of	3	to
Value1	variable:

Value1	=	TL_GetValue_BN(3,	100);

949

TL_GetValue_Dt

Returns	a	price	value,	at	the	specified	date	and	time,	of	a	trendline	with	the	specified
ID	number;	returns	a	value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

If	the	trendline	does	not	extend	to	the	specified	date	and	time,	a	price	value	along
the	same	slope	as	the	trendline	will	be	returned.

Usage

TL_GetValue_Dt(TL_ID,	DT)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number.

DT	-	a	numerical	expression	specifying	the	trendline	starting	point	date	and	time;
indicated	in	the	DateTime	format.	The	integer	portion	of	the	DateTime	value
indicates	the	number	of	days	that	have	elapsed	since	January	1st,	1900,	and	the
fractional	portion	of	the	DateTime	value	indicates	the	fraction	of	the	day	that	has
passed	since	midnight.

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New_Dt	when	the	trendline	is
created.

Example

TL_GetValue_Dt(value1,	41422.752623935186);	will	return	the	price	of	trend	line
with	ID	=	Value1	at	08:30:00.882	of	5/28/2013

950

TL_GetValue_s

Returns	a	price	value,	at	the	specified	date	and	time,	of	a	trendline	with	the	specified
ID	number;	returns	a	value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

If	the	trendline	does	not	extend	to	the	specified	date	and	time,	a	price	value	along
the	same	slope	as	the	trendline	will	be	returned.

Usage

TL_GetValue_s	(TL_ID,	Date,	Time_s)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

Date	-	a	numerical	expression	specifying	the	date;	the	date	is	indicated	in	the
YYYMMdd	format,	where	YYY	is	the	number	of	years	since	1900,	MM	is	the
month,	and	dd	is	the	day	of	the	month

Time_s	-	a	numerical	expression	specifying	the	time,	including	seconds;	the	time	is
indicated	in	the	24-hour	HHmmss	format,	where	130000	=	1:00:00	PM

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New_s	when	the	trendline	is
created.

Example

Assign	the	price	value,	at	10:00:00	AM	on	January	17th,	of	a	trendline	with	the	ID
number	of	3,	to	Value1	variable:

Value1=TL_GetValue_s(3,1080117,100000);

951

TL_Get_Anchor_to_Bars

Returns	the	value	of	the	"anchor	to	bar"	option	of	the	trendline	drawing	with	a
specified	ID.

Usage

TL_Get_Anchor_to_Bars(TL_ID)

Where:	TL_ID	is	a	numerical	expression	specifying	the	trendline	ID	number

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	the	"anchor	to	bars"	option	of	the	trendline	drawing	with	an	ID	number	of	3
to	the	Condition1	variable:

Condition1=TL_Get_Anchor_to_Bars(3);

952

TL_Lock

Locks	corresponding	trendline	drawing	so	it	cannot	be	moved	manually;	returns	a
value	of	0	if	the	operation	was	performed	successfully,	and	a	value	of	-2	if	the
specified	trendline	ID	number	is	invalid.

Usage

TL_Lock(TL_ID,LogicalExpression)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number	
													LogicalExpression	-	a	logical	value;	True	=	Add	and	False	=	Remove

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Lock	the	trendline	with	an	ID	number	of	3:

Value1=TL_Lock(3,True);

Unlock	the	trendline	with	an	ID	number	of	5:

Value1=TL_Lock(5,False);

953

TL_New

Displays	a	trendline,	with	the	specified	starting	and	ending	points,	on	the	chart	that
the	study	is	based	on;	returns	a	trendline-specific	ID	number,	required	to	modify
the	trendline.

Usage

TL_New	(sDate,	sTime,	sPriceValue,	eDate,	eTime,	ePriceValue)

Parameters

sDate	-	a	numerical	expression	specifying	the	trendline	starting	point	date;	the	date
is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since
1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

sTime	-	a	numerical	expression	specifying	the	trendline	starting	point	time;	the
time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM

sPriceValue	-	a	numerical	expression	specifying	the	trendline	starting	point	price
value	(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

eDate	-	a	numerical	expression	specifying	the	trendline	ending	point	date

eTime	-	a	numerical	expression	specifying	the	trendline	ending	point	time

ePriceValue	-	a	numerical	expression	specifying	the	trendline	ending	point	price
value

Example

Display	a	trendline,	that	begins	at	9:00	AM	at	a	price	value	of	1381,	and	ends	at	3:00
PM	at	a	price	value	of	1337,	on	January	17th,	2008,	on	the	chart	that	the	study	is
based	on:

Value1=TL_New(1080117,900,1381,1080117,1500,1337);

954

TL_New_BN

Displays	a	trendline	with	the	specified	starting	and	ending	points	on	the	chart	that
the	study	is	based	on;	returns	a	trendline-specific	ID	number	required	to	modify	the
trendline.

Instead	of	separate	Date	and	Time	values	or	a	single	DateTime	value,	bar	number
of	price	series	is	used.

Usage

TL_New_BN	(b_BarNumber,	b_Price,	e_BarNumber,	e_Price);

Parameters

b_BarNumber	-	a	numerical	expression	specifying	the	trendline	starting	point	bar
number.

b_Price	-	a	numerical	expression	specifying	the	trendline	starting	point	price	value
(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart).

e_BarNumber	-	a	numerical	expression	specifying	the	trendline	ending	point	bar
number.

e_Price	-	a	numerical	expression	specifying	the	trendline	ending	point	price	value.

Example

Display	a	trendline	that	will	connect	close	price	of	the	first	bar	of	price	series	with
the	current	close	price.

once	Value2=close;

Value1=TL_New_BN(1,Value2,currentbar,Close);

if	Value1	<>	Value1[1]	then	tl_delete(Value1[1]);

955

TL_New_Dt

Displays	a	trendline,	with	the	specified	starting	and	ending	points,	on	the	chart	that
the	study	is	based	on;	returns	a	trendline-specific	ID	number,	required	to	modify
the	trendline.

Instead	of	separate	Date	and	Time	values,	a	single	DateTime	value	is	used.	It	allows
accessing	millisecond	time	stamps	of	the	bar.

Usage

TL_New_Dt	(b_DateTime,	b_Price,	e_DateTime,	e_Price);

Parameters

b_DateTime	-	a	numerical	expression	specifying	the	trendline	starting	point	date
and	time;	is	indicated	in	the	DateTime	format.	The	integer	portion	of	the	DateTime
value	indicates	the	number	of	days	that	have	elapsed	since	January	1st,	1900,	and
the	fractional	portion	of	the	DateTime	value	indicates	the	fraction	of	the	day	that
has	passed	since	midnight.

b_Price	-	a	numerical	expression	specifying	the	trendline	starting	point	price	value
(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

e_DateTime	-	a	numerical	expression	specifying	the	trendline	ending	point	time;
the	date	is	indicated	in	the	DateTime	format.

e_Price	-	a	numerical	expression	specifying	the	trendline	ending	point	price	value

Example

Display	a	trenline	that	will	connect	a	close	price	100	bars	back	with	the	current
close	price.

Value1=TL_New_Dt(DateTime[100],Close[100],DateTime,Close);

if	Value1	<>	Value1[1]	then	tl_delete(Value1[1]);

956

TL_New_s

Displays	a	trendline,	with	the	specified	starting	and	ending	points,	on	the	chart	that
the	study	is	based	on;	returns	a	trendline-specific	ID	number,	required	to	modify
the	trendline.

Usage

TL_New_s	(sDate,	sTime_s,	sPriceValue,	eDate,	eTime_s,	ePriceValue)

Parameters

sDate	-	a	numerical	expression	specifying	the	trendline	starting	point	date;	the	date
is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since
1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

sTime_s	-	a	numerical	expression	specifying	the	trendline	starting	point	time,
including	seconds;	the	time	is	indicated	in	the	24-hour	HHmmss	format,	where
130000	=	1:00:00	PM

sPriceValue	-	a	numerical	expression	specifying	the	trendline	starting	point	price
value	(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

eDate	-	a	numerical	expression	specifying	the	trendline	ending	point	date

eTime_s	-	a	numerical	expression	specifying	the	trendline	ending	point	time,
including	seconds

ePriceValue	-	a	numerical	expression	specifying	the	trendline	ending	point	price
value

Example

Display	a	trendline,	that	begins	at	9:00:00	AM	at	a	price	value	of	1381,	and	ends	at
3:00:00	PM	at	a	price	value	of	1337,	on	January	17th,	2008,	on	the	chart	that	the
study	is	based	on:

957

Value1=TL_New_s(1080117,90000,1381,1080117,150000,1337);

958

TL_New_self

Displays	a	trendline,	with	the	specified	starting	and	ending	points,	on	the	SubChart
containing	the	study;	returns	a	trendline-specific	ID	number,	required	to	modify	the
trendline.

Usage

TL_New_self	(sDate,	sTime,	sPriceValue,	eDate,	eTime,	ePriceValue)

Parameters

sDate	-	a	numerical	expression	specifying	the	trendline	starting	point	date;	the	date
is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since
1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

sTime	-	a	numerical	expression	specifying	the	trendline	starting	point	time;	the
time	is	indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM

sPriceValue	-	a	numerical	expression	specifying	the	trendline	starting	point	price
value	(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

eDate	-	a	numerical	expression	specifying	the	trendline	ending	point	date

eTime	-	a	numerical	expression	specifying	the	trendline	ending	point	time

ePriceValue	-	a	numerical	expression	specifying	the	trendline	ending	point	price
value

Example

Display	a	trendline,	that	begins	at	9:00	AM	at	a	price	value	of	1381,	and	ends	at	3:00
PM	at	a	price	value	of	1337,	on	January	17th,	2008,	on	the	SubChart	containing	the
study:

Value1=TL_New_self(1080117,900,1381,1080117,1500,1337);

959

TL_New_Self_BN
The	same	as	TL_New_BN.	Difference:	Displays	a	trendline	on	the	SubChart
containing	the	study.

960

TL_New_Self_Dt

Displays	a	trendline,	with	the	specified	starting	and	ending	points,	on	the	SubChart
containing	the	study;	returns	a	trendline-specific	ID	number,	required	to	modify	the
trendline.

Instead	of	separate	Date	and	Time	values,	a	single	DateTime	value	is	used.	It	allows
accessing	millisecond	time	stamps	of	the	bar.

Usage

TL_New_Self_Dt	(b_DateTime,	b_Price,	e_DateTime,	e_Price);

Parameters

b_DateTime	-	a	numerical	expression	specifying	the	trendline	starting	point	date
and	time;	is	indicated	in	the	DateTime	format.	The	integer	portion	of	the	DateTime
value	indicates	the	number	of	days	that	have	elapsed	since	January	1st,	1900,	and
the	fractional	portion	of	the	DateTime	value	indicates	the	fraction	of	the	day	that
has	passed	since	midnight.

b_Price	-	a	numerical	expression	specifying	the	trendline	starting	point	price	value
(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

e_DateTime	-	a	numerical	expression	specifying	the	trendline	ending	point	time;
the	date	is	indicated	in	the	DateTime	format.

e_Price	-	a	numerical	expression	specifying	the	trendline	ending	point	price	value

Example

Display	a	trenline	that	will	connect	a	close	price	100	bars	back	with	the	current
close	price	on	the	SubChart	containing	the	study.

Value1=TL_New_Self_Dt(DateTime[100],Close[100],DateTime,Close);

if	Value1	<>	Value1[1]	then	tl_delete(Value1[1]);

961

TL_New_Self_s

Displays	a	trendline,	with	the	specified	starting	and	ending	points,	on	the	SubChart
containing	the	study;	returns	a	trendline-specific	ID	number,	required	to	modify	the
trendline.

Usage

TL_New_s	(sDate,	sTime_s,	sPriceValue,	eDate,	eTime_s,	ePriceValue)

Parameters

sDate	-	a	numerical	expression	specifying	the	trendline	starting	point	date;	the	date
is	indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since
1900,	MM	is	the	month,	and	dd	is	the	day	of	the	month

sTime_s	-	a	numerical	expression	specifying	the	trendline	starting	point	time,
including	seconds;	the	time	is	indicated	in	the	24-hour	HHmmss	format,	where
130000	=	1:00:00	PM

sPriceValue	-	a	numerical	expression	specifying	the	trendline	starting	point	price
value	(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

eDate	-	a	numerical	expression	specifying	the	trendline	ending	point	date

eTime_s	-	a	numerical	expression	specifying	the	trendline	ending	point	time,
including	seconds

ePriceValue	-	a	numerical	expression	specifying	the	trendline	ending	point	price
value

Example

Display	a	trendline,	that	begins	at	9:00:00	AM	at	a	price	value	of	1381,	and	ends	at
3:00:00	PM	at	a	price	value	of	1337,	on	January	17th,	2008,	on	the	SubChart
containing	the	study:

962

Value1=TL_New_s(1080117,90000,1381,1080117,150000,1337);

963

TL_SetAlert

Sets	the	alert	status	for	a	trendline	with	the	specified	ID	number;	returns	a	value	of
0	if	alert	status	was	successfully	modified,	and	a	value	of	-2	if	the	specified
trendline	ID	number	is	invalid.

Usage

TL_SetAlert(TL_ID,AlertStatus)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

AlertStatus	-	a	numerical	expression	specifying	the	alert	status	for	the	trendline:

	0	-	Alert	disabled

	1	-	Breakout	intra-bar

An	alert	is	triggered	if	the	High	crosses	over	the	trendline	or	the	Low	crosses
under	the	trendline.	Alert	triggering	conditions	are	evaluated	intra-bar.

	2	-	Breakout	on	close

An	alert	is	triggered	if	the	Close	of	the	previous	bar	was	below	the	trendline	and
the	Close	of	the	current	bar	is	above	the	trendline,	or	if	the	Close	of	the	previous
bar	was	above	the	trendline	and	the	Close	of	the	current	bar	is	below	the	trendline.
Alert	triggering	conditions	are	evaluated	at	Close	of	a	bar.

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

964

Set	alert	status	to	"Breakout	on	close"	for	a	trendline	with	the	ID	number	of	3:

Value1=TL_SetAlert(3,2);

965

TL_SetBegin

Modifies	the	starting	point	location	of	a	trendline	with	the	specified	ID	number;
returns	a	value	of	0	if	the	starting	point	location	was	successfully	modified,	and	a
value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	earlier	date	and	time	is
always	considered	to	be	the	starting	point;	if	the	trendline	is	vertical,	the	point	with
the	lower	price	value	is	considered	to	be	the	starting	point.

Usage

TL_SetBegin	(TL_ID,	sDate,	sTime,	sPriceValue)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

sDate	-	a	numerical	expression	specifying	the	new	starting	point	date;	the	date	is
indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since	1900,
MM	is	the	month,	and	dd	is	the	day	of	the	month

sTime	-	a	numerical	expression	specifying	the	new	starting	point	time;	the	time	is
indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM

sPriceValue	-	a	numerical	expression	specifying	the	new	starting	point	price	value
(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Move	the	starting	point	of	the	trendline	with	an	ID	number	of	3	to	10:00	AM	on
January	17th	at	a	price	value	of	1365:

966

Value1=TL_SetBegin(3,1080117,1000,1365);

967

TL_SetBegin_BN

Modifies	the	starting	point	location	of	a	trendline	with	the	specified	ID	number;
returns	a	value	of	0	if	the	starting	point	location	was	successfully	modified,	and	a
value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Between	the	two	end	points	of	a	trendline,	the	point	with	the	earlier	date	and	time	is
always	considered	to	be	the	starting	point;	if	the	trendline	is	vertical,	the	point	with
the	lower	price	value	is	considered	to	be	the	starting	point.

Instead	of	separate	Date	and	Time	values	or	a	single	DateTime	value,	bar	number	is
used.

Usage

TL_SetBegin_BN	(TL_ID,	BarNumber,	Price);

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number.

BarNumber	-	a	numerical	expression	specifying	the	trendline	starting	point	bar
number.

Price	-	a	numerical	expression	specifying	the	trendline	starting	point	price	value
(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart).

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Set	the	beginning	point	of	Trend	Line	with	ID	=	3	to	close	price	of	current	bar

Value1=TL_SetBegin_BN(3,currentbar[100],Close[100]);

968

TL_SetBegin_DT

Modifies	the	starting	point	location	of	a	trendline	with	the	specified	ID	number;
returns	a	value	of	0	if	the	starting	point	location	was	successfully	modified,	and	a
value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	earlier	date	and	time	is
always	considered	to	be	the	starting	point;	if	the	trendline	is	vertical,	the	point	with
the	lower	price	value	is	considered	to	be	the	starting	point.

Instead	of	separate	Date	and	Time	values,	a	single	DateTime	value	is	used.	It	allows
accessing	millisecond	time	stamps	of	the	bar.

Usage

TL_SetBegin_DT	(TL_ID,	b_DateTime,	b_Price);

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

b_DateTime	-	a	numerical	expression	specifying	the	trendline	starting	point	date
and	time;	is	indicated	in	the	DateTime	format.	The	integer	portion	of	the	DateTime
value	indicates	the	number	of	days	that	have	elapsed	since	January	1st,	1900,	and
the	fractional	portion	of	the	DateTime	value	indicates	the	fraction	of	the	day	that
has	passed	since	midnight.

b_Price	-	a	numerical	expression	specifying	the	trendline	starting	point	price	value
(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New_DT	when	the	trendline	is
created.

Example

969

Set	the	beginning	point	of	Trend	Line	with	ID	=	value	1	to	open	price	100	bars	back

TL_SetBegin_DT(value1,DateTime[100],Open[100]);

970

TL_SetBegin_s

Modifies	the	starting	point	location	of	a	trendline	with	the	specified	ID	number;
returns	a	value	of	0	if	the	starting	point	location	was	successfully	modified,	and	a
value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	earlier	date	and	time	is
always	considered	to	be	the	starting	point;	if	the	trendline	is	vertical,	the	point	with
the	lower	price	value	is	considered	to	be	the	starting	point.

Usage

TL_SetBegin_s	(TL_ID,	sDate,	sTime_s,	sPriceValue)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

sDate	-	a	numerical	expression	specifying	the	new	starting	point	date;	the	date	is
indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since	1900,
MM	is	the	month,	and	dd	is	the	day	of	the	month

sTime_s	-	a	numerical	expression	specifying	the	new	starting	point	time,	including
seconds;	the	time	is	indicated	in	the	24-hour	HHmmss	format,	where	130000	=
1:00:00	PM

sPriceValue	-	a	numerical	expression	specifying	the	new	starting	point	price	value
(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New_s	when	the	trendline	is
created.

Example

971

Move	the	starting	point	of	the	trendline	with	an	ID	number	of	3	to	10:00:00	AM	on
January	17th	at	a	price	value	of	1365:

Value1=TL_SetBegin_s(3,1080117,100000,1365);

972

TL_SetColor

Assigns	the	specified	color	to	a	trendline	with	the	specified	ID	number;	returns	a
value	of	0	if	the	color	was	successfully	assigned,	and	a	value	of	-2	if	the	specified
trendline	ID	number	is	invalid.

Usage

TL_SetColor(TL_ID,TL_Color)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

TL_Color	-	an	expression	specifying	the	trendline	color

Trendline	color	can	be	specified	by	a	numerical	expression	representing	an	RGB
color	number	or	a	legacy	color	value,	or	by	one	of	17	base	color	words.

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	the	color	blue	to	the	trendline	with	an	ID	number	of	3:

Value1=TL_SetColor(3,Blue);

Assign	the	RGB	color	2138336	(Orange)	to	the	trendline	with	an	ID	number	of	3:

Value1=TL_SetColor(3,2138336);

Assign	the	legacy	color	4	(Green)	to	the	trendline	with	an	ID	number	of	3:

[LegacyColorValue=True];
Value1=TL_SetColor(3,4);

973

974

TL_SetEnd

Modifies	the	ending	point	location	of	a	trendline	with	the	specified	ID	number;
returns	a	value	of	0	if	the	ending	point	location	was	successfully	modified,	and	a
value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	later	date	and	time	is	always
considered	to	be	the	ending	point;	if	the	trendline	is	vertical,	the	point	with	the
higher	price	value	is	considered	to	be	the	ending	point.

Usage

TL_SetEnd	(TL_ID,	eDate,	eTime,	ePriceValue)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

eDate	-	a	numerical	expression	specifying	the	new	ending	point	date;	the	date	is
indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since	1900,
MM	is	the	month,	and	dd	is	the	day	of	the	month

eTime	-	a	numerical	expression	specifying	the	new	ending	point	time;	the	time	is
indicated	in	the	24-hour	HHmm	format,	where	1300	=	1:00	PM

ePriceValue	-	a	numerical	expression	specifying	the	new	ending	point	price	value
(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Move	the	ending	point	of	the	trendline	with	an	ID	number	of	3	to	14:15	PM	on
January	17th	at	a	price	value	of	1350:

975

Value1=TL_SetEnd(3,1080117,1415,1350);

976

TL_SetEnd_BN

Modifies	the	ending	point	location	of	a	trendline	with	the	specified	ID	number;
returns	a	value	of	0	if	the	ending	point	location	was	successfully	modified,	and	a
value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Between	the	two	end	points	of	a	trendline,	the	point	with	the	later	date	and	time	is
always	considered	to	be	the	ending	point;	if	the	trendline	is	vertical,	the	point	with
the	higher	price	value	is	considered	to	be	the	ending	point.

Instead	of	separate	Date	and	Time	values	or	a	single	DateTime	value,	bar	number	is
used.

Usage

TL_SetEnd_BN	(TL_ID,	BarNumber,	Price);

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number.

BarNumber	-	a	numerical	expression	specifying	the	trendline	ending	point	bar
number.

Price	-	a	numerical	expression	specifying	the	trendline	ending	point	price	value.

Example

Set	the	ending	point	of	Trend	Line	with	ID	=	3	to	close	price	of	the	current	bar

Value1=TL_SetEnd_BN(3,currentbar,Close);

977

TL_SetEnd_Dt

Modifies	the	ending	point	location	of	a	trendline	with	the	specified	ID	number;
returns	a	value	of	0	if	the	ending	point	location	was	successfully	modified,	and	a
value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	later	date	and	time	is	always
considered	to	be	the	ending	point;	if	the	trendline	is	vertical,	the	point	with	the
higher	price	value	is	considered	to	be	the	ending	point.

Instead	of	separate	Date	and	Time	values,	a	single	DateTime	value	is	used.	It	allows
accessing	millisecond	time	stamps	of	the	bar.

Usage

TL_SetEnd_Dt	(TL_ID,	e_DateTime,	e_Price);

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number.

e_DateTime	-	a	numerical	expression	specifying	the	trendline	ending	point	date	and
time;	the	date	and	time	are	indicated	in	the	DateTime	format.

e_Price	-	a	numerical	expression	specifying	the	trendline	ending	point	price	value.

Example

Set	the	ending	point	of	Trend	Line	with	ID	=	value	1	to	close	price	of	the	current
bar

TL_SetEnd_Dt(value1,DateTime,Close);

978

TL_SetEnd_s

Modifies	the	ending	point	location	of	a	trendline	with	the	specified	ID	number;
returns	a	value	of	0	if	the	ending	point	location	was	successfully	modified,	and	a
value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Of	the	two	end	points	of	a	trendline,	the	point	with	the	later	date	and	time	is	always
considered	to	be	the	ending	point;	if	the	trendline	is	vertical,	the	point	with	the
higher	price	value	is	considered	to	be	the	ending	point.

Usage

TL_SetEnd_s	(TL_ID,	eDate,	eTime_s,	ePriceValue)

Parameters

TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number

eDate	-	a	numerical	expression	specifying	the	new	ending	point	date;	the	date	is
indicated	in	the	YYYMMdd	format,	where	YYY	is	the	number	of	years	since	1900,
MM	is	the	month,	and	dd	is	the	day	of	the	month

eTime_s	-	a	numerical	expression	specifying	the	new	ending	point	time,	including
seconds;	the	time	is	indicated	in	the	24-hour	HHmmss	format,	where	130000	=
1:00:00	PM

ePriceValue	-	a	numerical	expression	specifying	the	new	ending	point	price	value
(vertical	position,	corresponding	to	a	value	on	the	price	scale	of	a	chart)

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New_s	when	the	trendline	is
created.

Example

979

Move	the	ending	point	of	the	trendline	with	an	ID	number	of	3	to	14:15:00	PM	on
January	17th	at	a	price	value	of	1350:

Value1=TL_SetEnd_s(3,1080117,141500,1350);

980

TL_SetExtLeft

Adds	or	removes	a	left-side	extension	for	a	trendline	with	the	specified	ID	number;
returns	a	value	of	0	if	the	operation	was	performed	successfully,	and	a	value	of	-2
if	the	specified	trendline	ID	number	is	invalid.

Usage

TL_SetExtLeft(TL_ID,LogicalExpression)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number	
													LogicalExpression	-	a	logical	value;	True	=	Add	and	False	=	Remove

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Add	a	left-side	extension	to	the	trendline	with	an	ID	number	of	3:

Value1=TL_SetExtLeft(3,True);

Remove	a	left-side	extension	from	the	trendline	with	an	ID	number	of	3:

Value1=TL_SetExtLeft(3,False);

981

TL_SetExtRight

Adds	or	removes	a	right-side	extension	for	a	trendline	with	the	specified	ID
number;	returns	a	value	of	0	if	the	operation	was	performed	successfully,	and	a
value	of	-2	if	the	specified	trendline	ID	number	is	invalid.

Usage

TL_SetExtRight(TL_ID,LogicalExpression)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number	
													LogicalExpression	-	a	logical	value;	True	=	Add	and	False	=	Remove

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Add	a	right-side	extension	to	the	trendline	with	an	ID	number	of	3:

Value1=TL_SetExtRight(3,True);

Remove	a	right-side	extension	from	the	trendline	with	an	ID	number	of	3:

Value1=TL_SetExtRight(3,False);

982

TL_SetSize

Assigns	the	specified	width	to	a	trendline	with	the	specified	ID	number;	returns	a
value	of	0	if	the	line	width	was	successfully	assigned,	and	a	value	of	-2	if	the
specified	trendline	ID	number	is	invalid.

Usage

TL_SetSize(TL_ID,LineWidth)

Where:	TL_ID	-	a	numerical	expression	specifying	the	trendline	ID	number	
													LineWidth	-	a	numerical	expression	specifying	the	trendline	width;
trendline	width	can	range	from	0	to	6

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Assign	the	width	of	5	to	the	trendline	with	an	ID	number	of	3:

Value1=TL_SetSize(3,5);

983

TL_SetStyle

Assigns	the	specified	style	to	a	trendline	with	the	specified	ID	number;	returns	a
value	of	0	if	the	trendline	style	was	successfully	assigned,	and	a	value	of	-2	if	the
specified	trendline	ID	number	is	invalid.

Usage

TL_SetStyle(TL_ID,TL_Style)

Parameters

TL_ID	-	a	numerical	expression
specifying	the	trendline	ID
number

TL_Style	-	a	TL	style	constant
or	a	numerical	expression
specifying	the	trendline	style	as
follows:

Tool_Solid 1

Tool_Dashed 2 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tool_Dotted 3 ..
Tool_Dashed2 4 __	_	__	_	__	_	__	_	__	_	__
Tool_Dashed3 5 ___	_	_	___	_	_	___	_	_	___

Notes

A	trendline-specific	ID	number	is	returned	by	TL_New	when	the	trendline	is	created.

Example

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Dashed:

984

Value1=TL_SetStyle(3,	2);	

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Dashed:

Value1=TL_SetStyle(3,	Tool_Dashed);

985

Tool_Dashed

Constant,	used	in	combination	with	TL_SetStyle	to	designate	the	Tool	Dashed	style;
can	be	substituted	by	a	numerical	value	of	2.

Usage

TL_SetStyle(TL_ID,	Tool_Dashed)

or:

TL_SetStyle(TL_ID,	2)

Example

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Dashed:

Value1=TL_SetStyle(3,	2);	

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Dashed:

Value1=TL_SetStyle(3,	Tool_Dashed);

986

Tool_Dashed2

Constant,	used	in	combination	with	TL_SetStyle	to	designate	the	Tool	Dashed2
style;	can	be	substituted	by	a	numerical	value	of	4.

Usage

TL_SetStyle(TL_ID,	Tool_Dashed2)

or:

TL_SetStyle(TL_ID,	4)

Example

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Dashed2:

Value1=TL_SetStyle(3,	4);	

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Dashed2:

Value1=TL_SetStyle(3,	Tool_Dashed2);

987

Tool_Dashed3

Constant,	used	in	combination	with	TL_SetStyle	to	designate	the	Tool	Dashed3
style;	can	be	substituted	by	a	numerical	value	of	5.

Usage

TL_SetStyle(TL_ID,	Tool_Dashed3)

or:

TL_SetStyle(TL_ID,	5)

Example

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Dashed3:

Value1=TL_SetStyle(3,	5);	

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Dashed3:

Value1=TL_SetStyle(3,	Tool_Dashed3);

988

Tool_Dotted

Constant,	used	in	combination	with	TL_SetStyle	to	designate	the	Tool	Dotted	style;
can	be	substituted	by	a	numerical	value	of	3.

Usage

TL_SetStyle(TL_ID,	Tool_Dotted)

or:

TL_SetStyle(TL_ID,	3)

Example

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Dotted:

Value1=TL_SetStyle(3,	3);	

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Dotted:

Value1=TL_SetStyle(3,	Tool_Dotted);

989

Tool_Solid

Constant,	used	in	combination	with	TL_SetStyle	to	designate	the	Tool	Solid	style;
can	be	substituted	by	a	numerical	value	of	1.

Usage

TL_SetStyle(TL_ID,	Tool_Solid)

or:

TL_SetStyle(TL_ID,	1)

Example

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Solid:

Value1=TL_SetStyle(3,	1);	

Set	the	style	of	the	trendline	with	an	ID	number	of	3	to	Tool	Solid:

Value1=TL_SetStyle(3,	Tool_Solid);

990

	Пустая страница

